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CHAPTER 1
INTRODUCTION: THE GENERAL THEORY OF

DISTURBANCE-ACCOMMODATING CONTROL

1.1 Summary of Chapter I

This chapter discusses general aspects of the theory of
disturbance~accommodating control. The nature of dis-
turbances, the distinction between noise and disturbances,
and categories of disturbances are considered. A general
discussion of optimal control theory for the control problem
with disturbances is followed by presentation of an approach
to optimal control in the case where the disturbances have
"waveform structure." Finally, the theory of optimal
control for the linear-quadratic regulator with disturbances
is introduced, and the three primary modes of disturbance
accommodation are discussed: the cancellation mode, the

minimization mode, and the maximum utilization mode.

1.2 Disturbances in Control Problems; Their Nature and
hilosophies of Accommodation

Controlled systems are typically subjected to uncon-
trolled inputs arising from a variety of sources., These

uncontrolled inputs, referred to as disturbances, usually

occur at unpredictable times and are commonly viewed as
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undesirable. They may be broadly classified as either
noise-type disturbances or disturbances with waveform
structure [1].

Uncontrolled inputs, which have completely erratic,
random characteristics (i1.e., no significant degree of
regularity), are classified as noise-type disturbances.
Thermal noise encountered in radar and radio receivers is an
example of a noise-~type disturbance. Disturbances of this
type are often modeled by their statistical moments and
spectral density properties. The fields of stochastic
optimal estimation and control are concerhed almost entirely
with noise~-type disturbances, and several texts [2]-[4]
provide excellent coverage of these topics.

On the other hand, many uncontrolled inputs have "wave-
form structure" - their waveshape is describable as a
weighted combination of certain known basis functions. For
example, they may consist of weighted linear combinations of
steps, ramps, exponentials or other functions, even though
the specific values of the weighting coefficients or the
times at which they change value may be unknown. Such
inputs will be classified as waveform-type disturbances,

For example, wind gusts acting on a missile may be
classified as a waveform-type disturbance.

A further classification of disturbances may be made by
recognizing waveform-~type disturbances as being either

natural or command disturbances. Some examples of natural

disturbances are wind forces on aircraft, fluctuating loads




on power generators and drift in an amplifiec. An example
of a command disturbance arises in connection with a set-
point regulator problem, in which the primary control task
is to regulate the state x(t) to a given set-point x*., Con-
sider the usual linear state-variable model of a controlled

system:
¥ =A X+ Bu (1.1)

where x is the state vector, A is the "plant" matrix, B is
the input matrix, and u is the control vector applied to the
system. The "set-point error" is defined as xo = x* - x
and, using Equaticen (1l.l), the dynamics of xe(t) are found

to be governed by

X = A X =- B u- A x* (1.2)

Therefore, the control objective in terms of Equation (1.2)
is to regulate the error state xo to zero. The term Ax*

is an "uncontrolled" input and thus has the effect of a
known external disturbance in the model Equation (l.2). It
is therefore evident that a controlled system represented by
the conventional model Equation (l.1) fails to account for
the presence of such command disturbances. A similar dis-
turbance arises in the servo-tracking problem associated
with Equation (l.1l) wherein a prescribed servo-command func-
tion results in known, time-varying external disturbances.

Thus, even in the absence of "natural®™ disturbances, there

e ey

N e 2 EGTY M

TR M PVT | gt w0 VR Yy e

e b T AT U,




is a need to &ccount for command disturbances in control
system models.

Traditionally, the uncontrolled inputs associated with
control system design have been viewed as being detrimental
to the task of the control system. For example, in clas-
sical control system design, the frequency response of the
overall closed-loop system is often shaped to attempt to
filter-out noise and disturbances, while maintaining desired
stability and accuracy performance. Classical control de-
sign approaches have resulted in such design schemes as
"integral control", "feedforward control," and the notch
filter to minimize the effects of noise and disturbances.

On the other hand, there are practical situations in which
the effects of disturbances are not always detrimental to
achieving control objectives. For example, in a missile
intercept problem, where the primary control objective is to
drive the missile so that the position of the missile coin-
cides with that of the target, wind gusts that force the
interceptor missile to move in the direction of the target
may be constructively used to aid in the control task. In
particular, the presence of the wind disturbance may actual-
ly reduce the interceptor control energy and the time re-
Jquired to intercept the target. The concept of harnessing
"free” energy from winds, tides, etc. has, of course, been
used in applications other than control systems, and will no

doubt see extensive further development.
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The application of modern cont:ol theory te...iigques
permits the consideration of three modes of disturbance ac-
commodation:

(a) exact cancellation of the effect of the disturbance
on the control system,

(b) the "best"™ approximation to cancellation of the ef-
fect of the disturbance (when exact cancellation is not
achievable), and

(c) optimal utilization of the disturbance in ac-
complishing the control objectives.

In addition, combinations of these three modes may be
used in particular applications.

The theory to be developed in the present study assumes
that the disturbances might not be directly measurable. 1In
fact, in the typical case, only the commands and the plant
output y(t) are available as measurements to the controller,
where y(t) is a known algebraic function of time and the

states of the plant.

1.3 Optimal Control of Dynamical Systems in the Presence of

———

Disturbances; A General Approach

A fundamental difficulty arises when an optimal control
problem is formulated to include uncontrolled inputs such as
disturbances. Johnson [5] showed that the standard approach
via the Pontryagin maximum principle is effective only if

the time-behavior of the disturbance function is entirely

known a priori. Unfortunately, this is not a situation
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enjoyed in practice, since the behavior of disturbances is
almost never precisely known ahead of time.

One alternative to this standard optimal control ap-
proach is the stochastic-control method, which treats
disturbances as noise and utilizes statistical moments
(mean, covariance, etc.) to characterize the disturbance
time-behavior. The underlying assumption of the stochastic
approach is that all disturbance functions with the same
mean, covariance, etc. are modelled alike, ignoring any ad-
ditional information, such as waveform structure, that may
be available. Statistical moments, such as the mean and co-
variance, are based on averages over relatively long time
intervals. High-performance control system designs, how-
ever, often require short-term disturbance behavior patterns
for effective operation. For example, the long~term average
value wind-gust forces on an aircraft may be very close to
Zero, but effective control of the aircraft in the presence
of wind gusts reguires short-~term behavior information about
the disturbance. The characterization of disturbances sole-
ly by statistical properties is justifiable in control
system design only when no waveform-mode characterization is
possible; that is, when the disturbance is essentially

noise.

1.4 Optimal Control in the Presence of Disturbances Having
Waveform Structure

1l.4.1 Disturbance Modeling. Johnson [l] introduced

the concept of modeling uncertain waveform-type disturbances
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by giving a differential equation that the dJisturbance is
known to satisfy. The uncertain disturbance is described, in

this aporoach, as a linear combination of functions:
w(t) = clfl(t) + czfz(t) S cmfm(t) (1.3)

where the coefficients ci are piecewise constant, but un-
known, and the functions fj(t), called "basis functions,"
are known functions of time which characterize the possible
modes of the disturbance.
Suppose that the differential egquation
a’w dp‘lw dw

dtp + Bo dtp_l + . . . + 82 a? + Blw = w(t) (104)

(where the coefficients Sj are constants and w(t) is an
impulsive function consisting of delta functions, doublets,
etc.) has Equation (l1.3) as its solution. Then the effect
of w(t) will be to cause the coefficients cj to jump in
value in a piecewise constant féshion at the completely
unknown arrival times of w(t).

As an example, the piecewise constant disturbance

wlﬂt) =c (1.9)

where ¢ is unknown and changes its value at unknown times in
a plecewise-constant fashion, clearly satisfies the differen-

tial equation

dw)
It = g(t) (1.6)
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where v (t) denotes a sparse sequence of randomly arriving
impulses which cause the piecewise constant amplitude of the
disturbance wl(t) to change to a new value every once in a
while,

Similarly, a disturbance consisting of a linear com-

bination of constant segments and linear ramps:

wo(t) = ¢, * c,t (1.7)

clearly satisfies the equation

s ]
A%w,
— = w(t)
at”

(1.8)

where the impulsive sequence w(t) consists of isolated im-
pulses and doublets which cause the ¢, and <, to change
at unknown, random times.

In the general case, the basis functions f)(t),
£2(t), . + ., fmr(t) in Equation (l1l.3) may be constants,
ramps, polynomials, exponentials, sinusoidal terms, etc.
(and linear combinations of these), corresponding to the
mode content of the particular disturbance of interest. The
modeling approach will then be to find a differential equa-
tion of the general form as Equation (l.4) which has the
Jdisturbance w(t) as its solution,

This approach will be used to represent realistic dis-
turbances in the present atudy. It will often be useful to
view the disturbance as the "output"™ of a generally non-

linear dynamic process

"




i = l-,(zr X, t) + oft) (1.9)
w= %(z, x, t), to < t < T (1.10)

where z is the disturbance "state" vector, x is the plant

state vector, w is the disturbance vector and ¢ is a vector
whose elements are sequences of impulse functions. The

functions @ and # are, in general, time-varying, non-linear

and may involve the plant state x (representative of a
plant-dependent disturbance process). Since the possible
modes of the disturbance are assumed to be known a priori,
the functions @ and % are known, but the vector impulse

sequence o(t) is completely unknown,

In the case of the disturbance wj(t), Equation (1.7),

(a linear combination of constant levels and ramps which

gatisfies Equation (1.8)), the disturbance process is the

oy e

linear system .
z=Dz + o(t) (1.11)

w=H2 (1.12)

R R R L

where z and o(t) are 2-vectors, w is a scalar and U and H

are defined by

_fo 1
p=[§ 1 (1.13)

H=[1 0] (1.14)

It should be noted that the dynamic process, Equations

(1.9) and (1.10), seen as generating the disturbance w(t),
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is a fictitious process., Nevertheless, the actual processes
which generate typical disturbances such as wind gusts, load
variations, drifts, and biases can be accurately represented

by this type of model.

1.4,2 Optimal Control. The state model, Equation

(1.9), of the disturbance process can be combined with the
typical state model of the plant dynamics, resulting in the

general expressions

x = F(x, t, u(t) , o (z, x, t)) (1.15)

z = & (z, x, t) + o(t) (1.16)

Johnson has shown {5] that the optimal control u®, which

minimizes

'P
3 fur xp toe 7] = Gx(m, ™+ @)t u(e)) ae (1.17)

t
o

subject to the combined system Equations (1.15) and (l.16),

and assuming o(t) = o , can be expressed as

u® = ux, z, t) - (1.18)

That is, the optimal control at time t is a function of the
current state x(t) of the plant and the current state z(t)
of the disturbance. This result may be contrasted with that

obtained by the conventional optimization approach, which




1l

gives the optimal control as a function of the plant state
x(t) alone. The control Equation (l1.18), which accounts for
the presence of disturbances, was derived under the as-
sumption that the impulse sequence 0 (t) was identically
zero. In fact, o(t) is sparsely populated and unknown

a priori; and, therefore, its effect could be viewed as a
sequence of unknown initial conditions z(ty,) imposed on

the model Equation (l1.16). A corollary to this viewpoint
(stated as a conjecture in [5])) is that the control

uo(x,z,t) given by Equation (1.18) is "optimal" also for

the case where the sparsely populated impulsive sequence
o(t) is present,

Realization of the control law Equation (1.18) requires
that real-time, current values of the states (x,z) be made
available to the controller, through either direct measure-
ments or use of an observer. A discussion of the imple-
mentation of plant/disturbance state observers may be found

in (1], (S}, (6], and in Appendix A of this dissertation.

1.5 Optimal Control of the Linear-~Quadratic Regulator with
Digsturbances

1.5.1 The System Model. A special case of the optimal

control theory discussed in Subsection 1.4.2 is the linear-
quadratic regulator with disturbances present. Johnson has
shown in [1)}, [5], [6) and [7] how the disturbance accom-
modating theory applies to the set-point regulator and

servo-tracking control problems in which the plant dynamics

are modeled as:

R

P

T Lt re

AR i S

RN - g e WG~ TR ST S IO W e 3
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X = A(t)x + B(t)u(t) + F(t)w(t) (1.19)

y = C(t)x (1.20)

where x, u and w are vectors of dimension n, r and p, re-~
spectively, and n > r > p. The disturbance process (1.9),

(1.10) is modeled by the linear system:

w(t) = H(t)z + L(t)x (1.21)

z = D(t)z + M(t)x + o(t) (1.22)

where z is ap ~-dimensional vector.

1.5.2 The Cancellation Mode of Accommodation. The

problem of regulating the state x to a set-point, while at-
tempting to completely cancel the disturbances may be con-

sidered by splitting the control into two parts [6]:

u=u, +up (1.23)

where u. is the control required to perform disturbance
cancellation and ugR is the control required to drive x to

the desired set-point. For the special case of zero state

set-point, the control objective is to minimize the quadra-

tic functional

T

J(u) = .f [xT(t)Q(L)x(t) + uRT(t)R(t)uR(t)] dt (1.24)

%
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subject to the terminal condition x(T) = 0 and to the plant
dynamics Equations (1.19) and (1.20), and in the face of any
possible disturbance w(t) produced by Equations (l1.21) and
{1.22), where Q(t) and R(t) are known positive-definite,
symmetric matrices on the interval [ty, T). 1In (1.24) T is
the terminal time, and may be fixed a priori or may be

unspecified.

The disturbance-accommodating control, if it exists,
must be such that the term F(t)w (t) in Equation (1.19) is
exactly cancelled by control action B(t) uc(t). That is,
the required control component u, is of the form
u, = ¢, x,t,w)

where
B(t)¢c(x, t,w) + P(t)w(t) =0 (1.25)

for all realizable values of w(t) = Hz + Lx. Equation
{1.25) can be satisfied if, and only if, the column range

space of F(t)[H(t)IL(t)] lies within the column range space

of B(t). That is,

F(t) [H(t)l L(t:)]E B(t)T(t) (1.26)

for some matrix I (t), or, equivalently,
Rank [B(t)lF(t) [H(t)IL(t)]]E Rank [B(t)] oty St ST (1.27)

If Equation (1.26) is satisfied, then Equation (1.25) can be

satisfied by choosing
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u, = o (x, t, W) = - r(t)(-—,—i—) (1.28)

such that complete cancellation of the disturbance is ob- \

tained. Substituting Equations (1.23) and (1.28) into Equa-

tion (1.19) then gives
X = A(t)x + B(t)up(t) (1.29)
Conventional linear-quadratic regulator theory for the re-

duced problem Equation (1.29) (for example, see Athans and

Falb (8)) gives the optimal control up for Equations

(1.24) and (1.29) in the familiar state-feedback form #

up(t) = K(t)x(t) (1.30)

where the feedback gain matrix K(t) satisfies a particular
matrix Riccati differential equation. The complete control

u© is the superposition of Equations (1.28) and (1.30):

u°(x, z, t) = [K(t) - Fz(t)] X - Fl(t) z (1.31)
where T = [rlirz] .
Implementation of this optimal control law employs an
estimator to generate 2stimates Q and Q of the states x and
z from measurements of the output y. Johnson has shown [5]

that these estimates may be obtained from the composite
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estimator described by

£

x | . |A(t) + B(t)K(t) I o) ). X [Cx-y
z M(t) l D(t) z K, (1.32) ;
E
where the matrices Kj(t) and Ka(t) are chosen to make !
the estimation error ;
x(t) | [ x(t)
eE=\zm I\ = (1.33) :

z (t)

R

settle toward zero quickly between arrival times of the
isolated impulses of og(t). The term y in Equation (1.32)
represents the measurement of the output of the actual
plant, and ; and ; are the resulting on-line, real-time
estimates which are then used in the implementable control:

~

G ez, 0 = [k o] x ooz (1.34) i
The resulting controller is called a "disturbance-absorbing !
controller” and has interesting features which may be com-
pared with results from classical design approaches. For
the case of a piecewise constant disturbance, a propor-
tional-plus-integral controller is obtained from Equa-

tion (l.34); for disturbances that are represented by

higher-order polynominals, multiple-integral feedback




structures are obtained. In the case of sinusoidal dis-
turbances, with completely unknown phase and amplitude, ex-
pression Equation (1.34) produces the classical notch-filter
effect for the closed-loop system.

1.5.3 The Minimization Mode of Accommodation. Complete

cancellation of the effects of the disturbance on the plant
dynamics may not be possible - it may be mathematically im-
possible to find a T(t) satisfying Equation (1.26). 1If this
is the case, then uc(t) may be chosen to minimize the ef-

fects of the disturbance on the plant behavior, in some spe-

cified sense. One approach is to minimize the norm

[1B(t)u, + F(e)w(t)]] (1.35)

The vector uc which minimizes Equation (1.35) is not
unique, in general; but, if one chooses the u®. which
itself has minimum norm, then that u®; is unique, and is
given by

ug = -B¥ (£)F(t)w(t) (1.36)

where B¥(t) is the Moore-Penrose generalized inverse of
B(t) [6], [9]. 1If the rank of B is equal to r (the
dimension of the control u®.), then B¥ has the specific
form

-1
BH(p) = [BT(t)B(t)] BT (t)

£ 0 T~ RO A 4 V.
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The implementation of the control Equation {(1,36) requires
on-line, real-time estimates of x and z; and the modified
composite state observer equations are described in [6]. é
The computation of ug(t) is performed as for the case of |
complete cancellation,

1.5.4 The Maximum Utilization Mode. Disturbances are

not necessarily detrimental to the achieving of control sys-

tem objectives. Although numerous approaches have been de-

N N

veloped for cancelling or minimizing disturbances, the idea
of utilizing disturbances in control systems is a relatively
recent development (1], (5}, [6], [7]. Constructive
utilization of disturbances can lead to reduced control en-
ergy and reduced time required to bring the plant state to a
required set-point objective. Likewise, in servo-tracking
problems, disturbances may be constructively utilized to
assist the control in guiding the plant output y(t) to
Eaithfully "follow" a time-varying command function Ye(t) -
Maximum utilization of a disturbance w(t) having wave-~
form structure can be achieved by employing optimal control
theory to design the controller. Although this is virtually
impossible using classical control system design approaches,
it is relatively straightforward with modern optimal control
theory. The key to obtaining maximum utilization of dis-
turbances is to choose a performance index J so that, when J
is minimized with respect to the control u(t), the primary

control objective is accomplished and maximum use of the

disturbance w(t) is achieved. For example, if the primary




-
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control objective is to regulate the plant state x(t) to
zero, a secondary objective may be to use as little control '
energy as possible., One may be able to achieve these ob-

jectives by choosing a quadratic-type performance index as

. |
3 =3 xT(T) Sx(T) + 3 f [xT(t) Qx (t) + uT<t)RU<t’] dt (1.38)

%

where S and Q are given symmetric non-negative definite
matrices. S + Q is positive definite, R is a positive-
definite matrix, and the terminal time T is specified. Note
that, in this design, the control u(t) is not split into
components as was the case in Equation (1.23). The presence
of the positive definite matrix R encourages the effective
utilization of any "free" energy available in the disturb-
ance. This approach was used for a special application in
linear systems in the work of Johnson and Skelton [13], and
was subsequently generalized in the work of Johnson (6].

In the next chapter it will be seen that the disturbance
utilizing problem can be formulated as a linear-quadratic

regqulator problem by using the augmented vector

X =(32‘—> (1.39)

which is a composite of the state vectors of the plant and
the disturbance process. The composite system equation may

be written by using X and the plant and disturbance dynamic
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Equations (1.19), (1.21) and (1.22), with L(t) = 0, as fol-

()]s - 3] 6) -
2z (1.40)

The performance index Equation (1.38) can be written in the

lows:

equivalent form

T
J = %-;'c('r)§§('1‘) +%— f [q:'c'r(t)é;‘c(t) + uT(t)Ru(t)] dt  (1.41)

t
o

where § = CTSC, C = [~Cl0) and Q = CTQC. It will be

seen in Chapter II that the sparse sequence of impulses o (t)
can be disregarded and the control which minimizes Equation
(1.41) subject to Equation (1.40) can be found using stan-

dard linear-gquadratic methods, resulting in the control
o _ _pigpT [
u R™B Kex + szz] (1.42)

which is a function of the states of the plant and of the
disturbance process. It will also be seen that the time
varying gain matrix Ky(t) is the familiar gain term ob-
tained as the solution of a certain matrix Riccati equation,
as in the standard linear-gquadratic regulator problem. The
time-varying gain matrix Kyz will be found as the solution
of a certain linear matrix equation which depends upon K

and the parameters of the plant and disturbance processes,

The derivation and properties of Ky, Kyz and additional

TS B T, T N7 R

B L T
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matrices associated with the more general non-zero set-point

and servo-tracking problems will be further examined in the
next chapter.




oo .

CHAPTER 1II

DISTURBANCE-UTILIZING CONTROL; GENERAL

THEORY FOR LINEAR-QUADRATIC PROBLEMS

2.1 Summary of Chapter II

This chapter presents a general theory for disturb-
ance-utilizing control in the case of linear-quadratic re-
gulator and servo-tracking problems. A description of the
linear-quadratic regulator and servo-tracking control prob-
lems is given, followed by a discussion of the control ob-
jectives, problem formulation, and general solution of these
problems in the context of disturbance-utilizing control.
The computational and dynamic properties of the disturbance-
utilizing control law are discussed in terms of its general
behavior, steady-state solutions and metho§s for determining
steady-state values. The concepts of burden, assistance and
utility are presented and the properties of the utility
function and domains of positive uclility are examined 1in
detail.

2.2 Description of the Linear-Quadratic Regulator and
Servo-Tracking Control Problems

The concept of achieving maximum utilization of a dis-

turbance by employing optimal control theory in the control-

ler design was introduced in the previous chapter. The
21
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specific cases of obtaining maximum utilization of a dis-

turbance in linear-quadratic requlator and servo-tracking
control problems will now be described. The approach will be
demonstrated by considering a specific example using the

linear system model

x = A(t)x + B(t)u(t) + F(t) w(t) (2.1)

y = C(t)x (2.2)

where x, u and w are n-, r-, and p-vectors, respectively,
and n > r > p. The disturbance process will be assumed to
be a special case of the model of Equations (1.21) and

(1.22) with L(t) = 0 and M(t) = 0:

w(t) = H(t)z {2.3)

z = D(t)z + o(t) (2.4)

2.3 The Objectives of Disturbance-Utilizing Control

Strategy

The primary objective of control is assumed to be

either:

(a) regulation to a given state set-point xgp or a

given output set-point Yspr OF

R e e SR P AR B
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(b) servo-tracking of a given state or output servo-
command function xq(t) or yc(t).
The secondary control objective is to achieve the prim-
ary objective while minimizing the control energy as-
sociated with u(t). Control energy is assumed to be mea-

sured by the time-integral of the quadratic form

uT(t)R(t)u(t), when R(t) is a given symmetric, positive-
definite matrix.
These control objectives may be achieved [7] by con-

sidering the gquadratic performance index

T 1

T
3 = ze"(T)Se(T) + 1 f [T (r1o(tre(t) (2.5)
t
o m
+ut (OR(Bu(D)]  at

where S and Q(t) are given symmetric non-negative definite

matrices, S + Q is positive definite, the terminal time T is

R U R T A

given and, e = yco(t) - y(t) (or ygp = y(t)). The case
of state set-points or state servo-commands may be consider-
ed by setting C = I in Equation (2.2). The control objec-
tive is achieved by minimizing J with respect to the control
u(t), subject to the plant and disturbance Equations (2.1)-
(2.4).

The set of expected servo-commands y-(t) or set-points

Ysp are modeled by the equations

i i e
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y. (t) = Git) ¢ (2.0)

w

Cc o= E(t)e + ult) (2.7)

where y.- is an m-vector, ¢ in the v by 1l state vector ot
the set-point or servo-command process, c{t,) is arbitracy
and 1 (t) is a sparse sequence of impulses. It set-points
are being considered, y. should be set equal to ysp, a
piccewise constant function, and BE(t) will be identical-
ly zero. PFor the case of  servo tracking ov set-point reg-
ulation, the fundamental necessary condition for pertect
set-point ov sevvo tracking, e(t) & U, is that the "track-
ability condition" G(t) = C(t)v(t) be satizfied tor some
v(t) (see raferences [l0], (111, [12], [37]).

2.4 Formulation of the Disturbance-Utilization Optimal
control Problem

In this coatroller design approach, the control a (t)
1s not split as it was 1n Eguation (1.23). The presence ot
the positive penalty term uT(t)R(E)u(t) in the integrand
ut the pertormance index Egquation (Z2.5) encourages the
maximum utilization of the "tree energy” of the disturbance
w(t) while achieving the primary control objective ot
set-point regulation or sevvo-tracking. The disturbance
utilization linear-quadratic optimal control problem is
tormulated (Lor example, see Reference [71) by using the

auvgmented vector
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X 3
X = (2.8)
¥4

which 15 a composite of the state vectors of the plant, the
set-point or servo-command process, and the disturbance

process. The composite system eguation may be written by

Sk ip S TN T

using : and Equations (2.1), (2.4), and (2.7) to obtain:

H
%
i
:
g
i
\ X A n B o ¢
x = _ |= Q Xx +| O |Ju u (2.9)
L P - e -
s 0 0 o
The pertormance index Fquation (2.5) can be written in the g
. aquivalent torm :
‘ $
[ lll e
K -\ v - .
; J o= WY Evme L f[ xT(E)Q (L)X (L) + uT(t)R(t)u(t)] dt(2.10)
. - - t

[

where 5 = CUsSC, ¢ = (-CJGI0] and Q = ¢Voc.

Por reasons Jdiscussed in Reference (o], the sparse se-

quences of impulses 0o (t) and u(t) in Equation (I.,9) may be
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disregarded, and the solution of Eguations (2.9) and (2.10)
can be found using standard linear-quadratic optimal control
methods. The optimal disturbance-utilizing control is the
control u©(t) which minimizes Equation (2.10) subject to

the dynamic Equation (2.9).

2.5 General Solution of the Disturbance-Utilization
Optimal Control Problem

The minimization of the performance index J Equation
(2.10) subject to the composite dynamic system Equation
(2.9) can be accomplished by using the Hamilton-Jacobi the-
ory (4], [8]. If we define the special function V(%,t) to
be the value of the performance index J when the optimal

control u©(t) is employed, i.e.

xe
o
]

Vi, t) = J°; X, £, T) ; X(t_) = t (2.11)

it can be shown that the function V(%,t) satisfies the

Hamilton-Jacobi-Bellman partial differential equation

v T3V Ts.-15T YTy ,
T + V;V AX - %V;V BR B V%V + %X QOx 0 (2.12)

subject to the boundary condition

3w et & R -
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§x% (2.13)

where 5 and S have already been defined, and A and B are de-
: 4 fined by
A o] FH ;
A =|lol|lE|oO 1
(2.14) !
! o|o]|D s
~— H
p— i
B |
1 ....O_.J H
— and
T EAY vV
» 3 Vg v =<§T’. « ey -87\1—> ' N=n+ v + p (2 16)
| X1 N .
It may be shown (8] that, if u(t) is not constrained, T is
specified, S and Q(t) are non-negative definite, S + Q is
positive definite and R(t) is positive definite, then an op-

timal control exists and is given by

e o PP R ® o

WO (t) = -R ()BT (£) VY . (2.17)
X

The sought solution of the Hamilton-Jacobi-Bellman Equation

- TN S A AW

(2.12) can be expressed as the symmetric non-negative de-

finite quadratic form

“
4
i
\
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VX, t) = %}Tfut)k (2.18)

where P(t) = PT(t) > 0 is chosen to satisfy Equation
(2.12). For mathematical simplification, it is convenient

to partition P as the 3 x 3 block matrix:

Kx(t) Kxc(t) sz(t) 2.19)
- _ T . - . = .
P = Ko (t) Kc(t) Kcz(t) ; P(T) = 8§
T T
sz (t) Kcz (t{Kz(t)

where the dimensions of the component matrices are denoted

as follows: 5
LK"] ’[Kxc] ’ [sz] ’
nxp

nxn nxv

5] e ofeee]

vxn VXv VXp

] o[xe?] ofs]

pxXn PXV pPXpP

Now if Equations (2.18) and (2.19) are substituted in

the Hamilton-Jacobi-Bellman Equation (2.12), the result is a
set of six unilaterally coupled matric differential
equations which determine the individual blocks Kjj of the
partitioned matrix P. Those equations, with their specific

terminal conditions are as follows:

DUTYIG o,
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- -1.T, T, _ _ T . T

K, = (-A + BRT'B'K )Tk, - KA - CTaC ;K (T) = c'sC (2.21)
- -1.T, T, _ T . . T

Kyo = (<A + BR "B'K )"K - K E + CQG ;K  (T) =-C"SG(2.22)
K, = (-2 +BR BTk )Tk, - KFH - K, D K, _(T) = 0 (2.23)
Xz x' Txz x Xz "Txz ¢
- T Too=1.T, _ T . _ T

K, = -(KE + E'K)) + K_TBRB'K, - GTQG /K (T) =GTsG (2.24)

1.T

T T -
K = -(KczD + E Kc ) + Kec (BR B sz - FH);Kcz(T) = 0(2.25)

T
Kz = -(KzD + D Kz) + sz

T 1T T

- T
BR "B sz BFH) sz + sz FH]

(2.26)
?KZ(T) =0

These equations are independent of the initial conditions on

the plant, disturbances, and commands, and can be solved by
integrating in backward time, starting at t = T and "advanc-
ing" to t = tq,.

Finally, using the fact that V}V = Px, and sub-
stituting this relation in Equation (2.17), the optimal

disturbance-utilizing control is obtained as

o -1.T
u’ = -R "B [Kxx + K. c+ szz] . (2.27)

ot .
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Note that, for the zero set-point regulator with no dis-
turbances present, Equation (2.27) reduces to the form ’
familiar from the solution of the "conventional" linear-
quadratic zero set-point regulator problem ‘

o -1,T

= - B X

u R "B Ky (2.28)

in which Ky is the solution of Equation (2.21), a matric \

Riccati differential equation; (for example, see [8]):
As in the other modes of disturbance accommodation, a
composite state reconstructor will be used to provide es-
timates of x, ¢, and z for implementation of the control law .
Equation (2.27).

2,6 Computational Features_and Dynamic Properties of the
Disturbance-Utilizing Control Law

2.6.1 Behavior of the Riccati/Linear System of

Matric Differential Equations. The behavior of the

disturbance-utilizing optimal control law Equation (2.27)
depends on the values of the time-varying gain matrices
Kx(T), Kgo(t) and Kyz(t), which are the solutions of )
the differential Equations (2.21)-(2.23); therefore, a study
of these solutions is appropriate.
Results from the "conventional®" linear-quadratic reg-

ulator problem (i.e., with no disturbances present) apply to

T e A e X T A P TN By - AR YT 3 5 . ve
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the solution of Equation (2.2l1) (see Reference [8)). ' That

is, if S and Q(t) are non-negative definite, T is specified,

o B AOVBrear egm bghmr  8 Bzt

and R(t) is positive-definite, then Equation (2.21) has

Kx(t) as its unique n x n positive-definite solution.

This equation is completely uncoupled from the others, and

so it can be solved independently for Kx(t). Note that

Equations (2.22) and (2.23) each depend on Ky(t), ex-

%
i

ST

hibiting a unilateral coupling.

Since the boundary condition for each equation is given
at the terminal time, t = T, the equations must be solved in
backward time. By making the substitution

T=T--¢ (2.29) §
in Equations (2.21)=(2.23), where (T = tg) > T > 0, the

following "backward time" equations are obtained (here () =

da/dt):

. -1_ T, .T T . - T

K, = (A - BR "B K,) K, + KA+ CQC ,Kx(O) c'sC (2.30) |
" - ap-1aTy 3T - Top . T i'
Kxc = (A - BR °B Kx) Kec * KyoE c QG ,xxc(O) ==~-C"SG(2.31)

: ; - -1. 7, ,T .
‘. sz = (A BR "B Kx) sz + KxFH + szD ,sz(O) = 0 (2.32)

These differential equations are readily solved numerically,

using digital computer numerical integration routines, such
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as second-order or fourth-order Runge-Kutta, to obtain
Ky(t), Kyo(t), and Ky,(t) gain histories for the

optimal control law Equation (2.27) over the total control
interval t5 < t < T. The remaining three equations,
(2.24)-(2.26), do not enter into computation of the optimal
control law; but the latter two Equations, (2.25) and
(2.26), along with Equation (2.23), have important effects
on state space domains in which positive disturbance
utilization is possible. This topic is considered in
Section 2.8 of this chapter.

2.6.2 Existence of Steady-State Equilibrium

Solutions of the Riccati/Linear System. The special case in

which the matrices A, B, C, D, E, F, G, H, Q, R and S are
all constant matrices is important in practical applications
and can be analytically studied somewhat further than the
time-varying case. The existence of steady-state solutions
of the matric differential Equations (2.21)-(2.26) as T+
will now be examined for the constant case,

2.6.2.1 Existence of a Steady-State Solution K.

The standard linear-quadratic optimal control problem is
concerned with the task of finding the optimal control u®
to minimize a quadratic performance index Equation (2.5)

subject to an undigsturbed linear state model
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x = AX + Bu (2.33)

y= Cx (2.34)

The non-negative definite matrix Q in the performance index

Equation (2.5) can always be expressed as (14]

Q=H" H, (2.35)

for some unique matrix Hy. If the matrix pair (A, H)]
is completely observable and the matrix pair [A, B] is com-
pletely controllable, then it can be shown [15] that, for

the time invariant problem, as T+, the solution Ky(T) of

the matric Riccati Equation (2.30) is uniformly

asymptotically stable to a well-defined matrix Rx

lim K, (1) = K, (2.36)

T+®

where Ky is the unique, positive-definite solution of the

so-called matric algebraic Riccati equation

-1.T= T2 = T
(A - BR Bxx) K, + K,A +CQC =0 (2.37)

The composite system described by Equation (2.9), how-

ever, is not completely controllable, since the control u(t)
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has no effect on the disturbance z or the set-point/servo-
command state c¢. Thus, the aforementioned sufficient con-
ditions for the existence of a steady-state solution are not
met by the augmented matrix P (Equation (2.19)).

An alternative approach [16] to the problem of existence
is to partition the composite system equations into a com-
letely-controllable (c.c.) part and a totally uncontrollable
part. Then the conditions on the existence of steady-state
value of gain will apply to the c.c. part. For this
purpose, the composite matrices A and B will be
re-partitioned as

_ a | A, _ B .

where the following identifications are made:

Al = A (2.39)
A, = [0 IFH (2.40)
A - [E]O (2.41)

2 (ol
B. = B (2.42)
1

It is observed that Equation (2.30) is the Riccati equa-

tion for the auxiliary problem with system equation

r5y W YR T T
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X. = A X; + By u (2.43)

y = C XI (2-44)

X I 2.45)
=2 e ('
X11
where
XI=X
(e (2.46)
*11 S\

Now, if the matrix pair (A, H}] is completely ob-
servable and the matrix pair (A}, B)] is completely con-
trollable, then as T »= the matric Riccati differential Equa-~
tion (2.30) has a solution which approaches a unique, con-
stant, positive-definite value Ex, and furthermore, ix
is the unique, positive definite solution of the associated
matric algebraic eguation (2.37).

The inclusion of the condition that the matrix pair
[A;, H)) be completely observable ensures that the
eigenvalues of the closed-loop matrix

- -1.T (2.47)
ACL = (A BR °B Kx)

will have negative real parts [15, 17:; pp. 39-43], even

if the original open-loop system is unstable. (The

Wl 2w T IR . g
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condition on (A}, H)] has the effect of ensuring that
the elements of the state vector x are all "observed" by the
performance index J).

2.6.2.2 Existence of a Steadv State Solution

[ If zhe conditions for the existence of Ky are met,

then as,f»w, Equation 2.31 may be written

1

. T T __ AT
Kxc(r) = ACL Kxc(r) + Kxc(r) E - CQG; Kxc(O) =~C"SG (2.48)

Equation (2.48) may be rewritten as the equivalent vector

R BT ¢ D e A RO R

differential equation ([20]), Chapter 12)

{ .

= - ; = 2.49)

. Kye (T) Axckxc(r) Cyo’ Kye (9 Koxe (
where Kye is now a (nvx 1) vector whose elements are the
elements of the (n by v) matrix Kyco. Similarly, cxe is

a (nvby l) vector whose elements are the elements of

emiembl o

cTQG, and kgxc is the (nvby 1) initial-condition vector

whose elements are the elements of —CTSG. The matrix
Axc is the (nv by nv) square matrix defined by the

Kronecker sum

SR R BT IR TAR AN T prot MRS N o e

A _=A. XI +I XE (2.50)
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which is the sum of two Kronecker products. Recall that
ACL is an (n by n) matrix and E is a (v x v) matrix.

Since Equation (2.49) is equivalent to Equation (2.48),
the stability of Equation (2.48) is determined by the
eigenvalues of Ax . Bellman ([20] , p. 230) shows that the

C

eigenvalues of the Kronecker sum

Ag = A, XI + In XBO (2.51)
are \i(Ao) + kj(BO);
i=1,2, ..., n; 3j=1, 2, ... v (2.52)

where Ao is an (n by n) matrix and Bo is a ( v by v)
matrix, the eigenvalues of Ao are Ai(Ao) and the
eigenvalues of B, are Aj(Bo). Using the fact that the
eigenvalues of ET and of E are identical, we may thus de-

termine the eigenvalues of Axc by

i=1,2, ... ,n; 3j=1,2, ...,V (2.53)

where Ai(ACL) and Aj(E) are the eigenvalues of A,

and E, respectively. The vector differential Equation

R I R 5. s
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(2.49) will be asymptotically stable if, and only if, the
eigenvalues of Ay. have negative real parts, Therefore,
we may state the tollowinyg

; CONDITION 2.1 A necessary and sufticient condition that

Kyc has a steady-state value Ky. is that

Re [,\i(I\CL) + ,\j(E)] < 0;

forany 1 = 1, 2, ..., n ; jJ =1, 2, ..., Vv
(2.54)

i.e., that the sum of the real parts of any eigenvalue of
the closed-loop system matrix Acp and any eigenvalue of
the set-point/command matrix E is negative.

Condition 2.1 is necessary because Ay. must be an
asymptotically stable matrix (Equation 2.49 must have an
asymptotically stable solution kyc(T)) to ensure that
Kyc exists. Condition 2.1 is a sufficient condition be-
cause, if Ay is an asymptotically stable matrix, then
kxyc( 1) is asymptotically stable and hence Ky. exists.

Note that Condition 2.1 will be satisfied for the con-
stant set-point problem, in which E & 0 since Acp, is an
asymptotically stable matrix under the assumption that the
pair A, B] is completely controllable, and Q is non-neg-

ative definite so that

R, [‘i“‘cn’] <0; for all i =1, 2, ..., n (2.55)

PR gregr -
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In addition, Condition 2.1 willi be satis{ied by a servo-

command dynamic system (2.7) such that E has the property
Re[xj(E)lgo (2.56)

Furthermore, Condition 2.1 may be satisfied by certain E
matrices having eigenvalues with positive real parts if it
is known that Acy has a certain prescribed degree of

asymptotic stability such as

<
Re [xi(ACL)] S - oot Op > O (2.57)

where oy, is sufficiently large. In that case Condition

2.1 would be satisfied for
Re [Aj(E)] < Oupi Gap > 0 (2.58)

If Condition 2.1 is satisfied. then a steady-state value

ﬁxc will exist, such that
lim K (1) = K . (2.59)
T

Moreover, when the constant matrix Exc is substituted in

Equation (2.31), the algebraic equation

2 T I R T e RPN
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- 2,60
+ K_E = CTQG ( )

ACI:erc XC

is obtained, where Acp is defined by Equation (2.47) and
now depends on the constant limit Rx. In a manner similar

to that used in the analysis of the differential Eguation

(2.48), Equation (2.60) may be written as the equivalent

vector algebraic equation {20; pp.231]

Axe kxc = %xe (2.61)
where Ay. is defined in Equation (2.50), the vector cg¢
was defined following Equation (2.49) and Exc is the con-
stant (nv by l) vector whose elements are the elements of
the matrix Rxc. Since the eigenvalues of Ay. are
Aj(Acp) + xj(s), the algebraic equation (2.61) has a
unique solution if, and only if [20; pp. 231],
A;(A..) + AS(E) # 0;
i
cL J (2.62)
for any i =1, 2,..., n ; j =1, 2, ...,V
Moreover, since Equation (2.6l1) is equivalent to Egquation
(2.60), we can state the following:

COROLLARY 2.1 A necessary and sufficient condition that

the linear matric algebraic Equation (2.61) has a unique

solution Kyo, for any CTQG, is that




Ai(Agp) + A3(E) # 0 ;

foranyi=1, 2, ..., n ; 3=1, 2, ..., Vv (2.63)

PUNK TR T P

which is automatically satisfied if Condition 2,1 is met.

The necessary part of Corollary 2.1 follows since the

eigenvalues of Ay. must be non-zero for the existence of a

unique solution ky. in Equation (2.61) and hence, for the
existence of matrix Exc- The sufficient part of Corollary
2.1 follows because, if the eigenvalues of Ay. are non-
zero, it is guaranteed that a unique solution kyc exists
and hence that a unique solution Kyc exists.

A parallel approach is used in the following sections to
determine the existence conditions for steady-state gains
Kyzs Kes Koz and K;. In each case, a linear matric
equation is analyzed by examining an equivalent linear
vector-matric equation.

2.6.2.3 Existence of a Steady-State Solution

Kyz. The conditions for the existence of a steady-state

matrix

sz = lim sz(r)

(2.64)

T + @

may be determined by an approach like that of section

2,6.2,2. The differential equation (2.32) involving
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Kyz(T) may be written (if K, exists as t+») as follows:

T
sz(r) = A K,

(t) + KXZ(T)D + K FH ; sz(O) = 0 (2.65)
Equation (2.65) may be expressed by the equivalent vector
differential equation

kxz(T) = A k(1) +c . Pk (0) =0 (2.66)
where kyz is an (np by 1) vector whose elements are the
elements of the matrix Ky,, and cyxz; is an (np by 1)

vector whose elements are the elements of KyFH. Ay, is

the (np by np) square matrix defined by the Kronecker sum

A = A

T
Xz CLXIO+ InXD . (2.67)

Since DT and D have the same eigenvalues, the eigen-

values of Ay are

Aj(Agp) + Ay3(0) ; i=1,2, ..., n; J=1,2, ..., P(2.68)

where Aj(Acr) are the eigenvalues of the closed-loop
system (which have negative real parts if the pair [A, B] is

completely controllable and Q is non-negative definite), and
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Xj(D) are the eigenvalues of the system matrix of the dis-
turbance process, Equation (2.4). The vector differential
Equation (2.66) will be asymptotically stable if, and only
if, the eigenvalues of Ay, have negative real parts. We
therefore have

CONDITION 2.2 A necessary and sufficient condition that

Kxz has a steady-state value is that

Re [Mi(Agy) + A3(D)] <0 (2.69)

for any i =1, 2, ..., n ; J =1, 2, ..., p
i.e., that the sum of the real parts of any eigenvalue of
the closed-loop system matrix Acp and any eigenvalue of
the disturbance process system matrix D is negative.
Since Acp is asymptotically stable, Condition 2.2 will

be satisfied by disturbance models such that
Re [xj(o)] <0 , (2.70)

and, in the special case where it is known that Acp pos-
sesses a certain prescribed degree of asymptotic stability
such that Equation (2.57) holds, then Condition 2.2 will be

satisfied by

Re [A4(D)] < ooy 5 0oy 5 O (2.71)
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If Condition 2.2 is satisfied, then a steady-state solu-
tion sz will exist, and when this is substituted in Equa-
tion (2.32), the following matric algebraic equation is ob-

tained:

T= - T
ACL sz + szD = KxFH (2.72)

An equivalent vector algebraic equation may be written as

Ak =-c¢c (2.73)

where Ayg; is defined in Equation (2.67), cyx, was defined
following Equation (2.66), and Exz is the constant (np by
1) vector where elements are the elements of the matrix
Kyz. Since the eigenvalues of Ay, are ) j(Acp) + A4(D),
the algebraic Equation (2.73) has a unique solution

if, and only if, [20; pp. 231],

A, (A + A, (D 0;
i (Acr) p| ) # (2.74)

for any i =1, 2, .e., n ; J =1, 2, ..., Vv
Moreover, since Equation (2.73) is equivalent to Equation

(2.72), we can state the

COROLLARY 2.2 A necessary and sufficient condition that

the linear matric algebraic Equation (2.72) has a unique

B e — o= e BRSNS . m e
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solution Ky,, for any matrix -KyFH, is that

Ai(ACL) + xj(o) # 0;

. 2,75
for any i =1, 2, ..., n ; 3j=1,2, ..., ( )

which is automatically satisfied if Condition 2.1 is met,

2.6.2.4 Existence of a Steady-State Solution Rc-

If, as t1>~, a steady-state matrix Kyc exists, then

Equation (2.24) leads to the "backward-time" equation

1,.T

Tgr~1p

= T
+ ;
Kxe * G796 (5 76)

- T -
R (1) = ETK (1) + K (T)E - K __

T
KC(O) = G"S5G .

Equation (2.76) is stable if, and only if, the eigenvalues
of E have negative real parts, which leads to

CONDITION 2.3 A necessary and sufficient condition that

Ko exists is that [20; pg. 231)
Re (A ;(B) + A j(E)} < 0;
forany i =1, 2, ..., v ; 3J=1,2, ...,v ; (2.77)
(including i = j)
i.e., that the real part of every eigenvalue of E be nega-
tive.

This is a stronger condition than the condition for the
existence of Kyc. Note that K. will not exist for the
set-point regulator case, since for that problem, the set-
point "command generator" model (Equation 2.7) has E =z 0,
and therefore is not asymptotically stable. However, ﬁc

will exist for such servo-command systems as may be modeled

by an asymptotically stable linear system matrix E,
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In those cases where Condition 2.3 is satisfied, the

limit Rc may be substituted in Equation (2.76), resulting

in the matric algebraic equation

ETR, + RGE = RyoBR™1BTRy. - GTQG (2.78)
which has a unique solution ic if, and only if, it

satisfies

COROLLARY 2.3 A necessary and sufficient condition that

the linear matrix algebraic Equation (2.78) has a unique
solution Ko, for any matrix K, BR-1BTKy. -GTQG,
is that Ky. exist and that [20; pg. 231]
ki(E) + Xj(E) # 0;
for any i =1, 2, ...,V i 3 =1, 2, «euyV ; (2.79)
(including i = j)
This will automatically be satisfied if Condition 2.3 is

met.

2.6.2.5 Existence of a Steady~-State Solution

gcz. If, as 1+, Exc and Exz exist, then Equation

(2.25) leads to the "backward-time" differential equation

. T
Koy (1) = E

= T -1.T
Kcz(f) + Kcz(T)D - Kxc (BR "B
Kcz(O) = 0 .

sz - FH)(2,80)
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The stability of Equation (2,80) is determined by X {E) +
Xj(D) as follows:

CONDITION 2.4 A necessary and sufficient condition that

a steady-state solution Koz exist is that Kyc and Kyz

exist and

re(d ;(E) + A @] <o;

2,
for any i =1, 2, ...,v ; 3 =1, 2, ...,p . (2.81)

If Ko, exists, then, when it is substituted in Equa-

tion (2.80), the result is the matric algebraic equation

(2.82)
Tz = % T -1
C'K,, + K,,D = K __(BR

T—
B sz - FH) ,
which has a unique solution Rcz if, and only if, it

satisfies

COROLLARY 2.4 A necessary and sufficient condition that

the linear matric algebraic Equation (2.82) has a unique

, = . = T -1, T=
solution Kcz’ for any matrix Kxc (BR "B sz FH),

is that Kx and szexlst and

c
Xi(E) + kj(D) # 0;

2.83
for any i =1, 2, ...,v ; 3§ =1, 2, ...,p . ( )

which will be automatically satisfied in Condition 2.4 is

met.

2,6.2.6 Existence of a Steady-State Solution K,.

If Exz exists as t+w, then Equation (2.26) leads to

Pt e, e o
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. T - % Tag-l.Tz [ Tz = T ].
Kz(r) =D Kz(r) + KZ(T)D szBR B sz+ (FH) sz + sz FH |;

K _(0) =0
2 (2.84)

which is asymptotically stable if, and only if, it satisfies

CONDITION 2.5 A necessary and sufficient conditiorn that

a steady-state solution K; exist is that Ky, exist and

re [\, (D) + xj(o)] <0;
for any i =1, 2, ...,0 i =1, 2, cou,p

-
’

(including i = j)
g ] (2.85)

i.e., that every eigenvalue of D have a negative real part.
Note that this is a more restrictive condition (on the
eigenvalues of D) than Condition 2,2,

If szexists, then the following matric algebraic
equation results from Equation (2.84)

= = T ooo-lTe Tz . % T
D'k, + K,0 = K ,T BR'B'R,, - [(Fm TR+ K Tru] (2.86)

which has a unique solution K, if, and only if, it

satisfies

COROLLARY 2.5 A necessary and sufficient condition that

the linear matric algebraic Equation (2.86) has a unique

solution R,, for any matrix Ry,TBR-1BTK,,

-[(FH)TRy, + Ry ,TFH] is that

Lo R -
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Ai(D) + Aj(D) # 0;
for any i = 1, 1, ...,0p 5 3 =1, 2, «e.,p  12.87)
(including i = j)

which is automatically satisfied if Condition 2.5 is met,

2.6.3 The Steady-State Control Law. If the conditions

for existence of Ky, Kyc and Ky, are satisfied, then
the steady-state control for the set-point/servo-tracking
disturbance utilizing problem exists and can be expressed as
-0 -1.7T = = =

= - . 2.8
u R "B [ Kxx + Kxec + szz ] ( 8)
Furthermore, the steady-state gains Ky, Kyc and Kyg
are found as the unique solutions of the matric algebraic
Equations (2.37), (2.60) and (2.72), respectively.

The performance index for the steady state set-point/

servo~tracking problem is

3= 6T (=) 5% + % IR © + uT(ORa(n)] de.(2.89)
(e)

A finite value of J in the infinite-~time problem re-
quires that the set-point/servo-command vector c(t) - 0 as
T+ , This can be seen by considering, for example, the
problem of regulating the plant state x to a non-zero set-

point xgp, where Xgp is not a natural equilibrium point.
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Maintaining x at xgp, as T*®, requires a constant value of
control u in this case, causing the integral term in J (an
integral over an infinite time interval) to be infinite in
value. This property may be summarized by stating that the
performance index J Equation (2.89) for the steady-~-state
set-point/servo-tracking disturbance-utilizing problem will
be infinite if the system matrix E of the set-point/servo-
command model does not have eigenvalues with negative real
parts.

Similarly, a finite value of J in the infinite-time
disturbance-utilizing problem requires that the disturbance
state vector z(t) - 0 as 1*®, For example, a constant dis-
turbance in the steady-state disturbance-utilization problem
leads to a constant control u(t) as t™**®, which in turn leads
to an infinite value of J. Thus, we may summarize this
property by stating that the performance index J (Equation
2.89) for the steady-state set-point/servo-tracking
disturbance-utilizing problem will be infinite if the system
matrix D of the disturbance model does not have eigenvalues
with negative real parts.

If the steady-state problem leads to an infinite value
of J, then Equation (2.88) is no longer a rigorous expres-

sion for the optimal control, but may serve as a reasonable
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approximation for engineering purposes. Anderson an‘® Moore
(17; pg. 265] state that, in this case,

The only general optimal control interpretation of
these results is that they are the limiting results
of the finite-time optimal servo problem case. That
is, they have properties very close to the optimal
systems designed for a large terminal time T.

2.6.4 Some Methods for Determining the Steady-State

Equilibrium Values

2.6.4.1 Explicit Solution for ix. The solution

of the algebraic Riccati equation

(a - 18Tk ) TR _+ KA+ cTac =0 (2.50)
may be found in explicit form as follows [9; pg. 121].
Consider the matrix
-A BR'lBTl
M =
Lchc! aT } (2.91)

Let T be any matrix which transforms M into its Jordan form

L, so that
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L=T MT (2.92)

Then, using the partitions of L and T, write

-

[ —l T
A l BR "B Tl TZ Tl TZ [Ll LZ

- (2.93) 4

cTac AT T3 ‘ Ta) |Ta l T4 {0 2 1

R $

Then, provided T]| is nonsingular, the matrix i

R =r1,7,~1 (2.94) f

X 371 g

is a solution of Equation (2.90).
Other methods cof explicit solution for Rx may be found

in {9] and ({(17].

E

2.6.4.2 Explicit Solutions of the Linear Matric

s

Algebraic Equations. The linear matrix algebraic equations

for Ky, Kyzs Ko, Koz, and K, may each be express-

ed in the general form

NK + KP = Cx (2.95)

The solution K, if it exists, is unique and is expressed by

t1<01; pg. 175, Theorem 6)

P LA T AP A AP Ao P2 BT TN DL O A IHAIRY * ey Rt T W
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® N P
k=-f e e tat. (2.96)
<

This is seen by considering the equation

Z= N2 + 2P, Z(0) =C (2.97)

K

Which may be integrated between t = o and t = «; assuming

that lim Z(t) = o, the result is

Tro

-y = N(j; zds) + ({st) P (2.98)

and it is seen that
° Nt Pt
Q (8]

satisfies Equation (2.95).

Special Cases

Under special conditions such as E = 0 or D

0, simpler

expressions may be obtained. For example, if E = 0 the
equation for Kyxc (Equation (2.60)) becomes
= T
A..TK = C QG (2.100)

CL XC
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RUTp

and if (AcpT)~! exists, then

-1
= T,-1.T _ _ ap~1aTz T T
Ky = (A ) 7CQG = [LA BR "B K ) ] c QG (2.101)

which can be solved by direct matrix operations. As a

0, the equation for Ky, becomes

second example, if D

A..T K _ = -K_PFH (2.102)

and if (AcT)~! exists, then

sz = [(A BR "B Kx) KXFH (2.103)

which, again, can be solved by direct matrix operations.

2,6.4.3 Computational Methods. One way to com-

pute the steady-state solutions of the matric Riccati and
the linear matric equations is to use a digital computer to
integrate the backward-time equations until near-constant
values are obtained. This approach has been successfully
used with second- and fourth-order Runge-Kutta integration

algorithms.
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Other approaches are available for solving the
algebraic matric equations, such as the singular perturba-
tion method ((17], Chapter 15), which can lead to con-
siderable savings in computer time in obtaining approximate

solutions of matric Riccati equations.

2.7 The Concepts of Burden, Assistance and Utility in
Disturbance-Utilization Control Theory

The solution Equation (2.18) of the Hamilton-Jacobi-
Bellman equation involves the partitioned matrix P(t). The

partitions of B(t) may be substituted in Equation (2.,18) to

S W e e e

obtain the expanded expression

c

R e

T
Vi{x,c,z,t) = 5(xTKxx + C ch + ZfTKx ?)

T T T (2.104)
+ (x sz + c Kcz)z + kz K,z
The solution Equation (2.104) is the value J© of the
per formance index J obtained under optimal control u = u°
at the general initial conditions (x, ¢, z, t). The last

term in Equation (2.104) is due to disturbances alone, and

B s o B R R I

is equal to, or greater than, zero. Since it does nothing

iy e

but increase the minimum value of J, Johnson has defined it

as the "burden" B (7]:

PR R g

22 (2.105)

T gy . -

B AN 27K

T T . . .
The term (x sz + c Kcz)z in Equation (2.104) is

produced by interactions between the plant state x and the
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disturbance state z, and between the set-point state ¢ and
the disturbance state z, This term involves bilinear forms
which may be negative, zero or positive at any time t. When
this term becomes negative, it acts to further reduce the
minimum value J° (x, ¢, 2z, t) of J in Equation (2.104);
that is, negative values of this term actually provide
assistance toward the objective of obtaining a minimum value
of J. Therefore, Johnson has called the negative of this
term [{7] the "assistance" :

o8 - (xTk

X

T .
Z+CKcz)z ?

. = s = (2.106)
X; c(to) = C; z(to) z

"

x(to)

The sign of the assistance in Equation (2.106) may itself be
negative, in which case it has the effect of an additional
burden.

The first term in Equation (2.104) does not involve the
disturbance state z at all, and is, in fact, the minimum
value of J that would be obtained when no disturbance is
present. Therefore, any constructive action by the dis-
turbance will be reflected in the difference between the V
expression when the disturbance is present and that same V

when the disturbance is absent. Johnson has defined this

latter difference as "utility" #([7]:

%AV -V

wit) Z0 . (2.107)

wit) =0

Thus, utility can be written as
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T T T
= -(xK _ +CK, )z~ 42K,z (2.108)
or, symbolically,
“f"—' ‘M—-ﬂ (2.109)

Positive utility results when the assistance .¥ is greater
than the burden #. Whether or not positive utility is
achieved at any time t during the control interval [ty, T
depends on two general characteristics of a particular
problem:

(1) the magnitudes and signs of the elements in the
gain matrices and

(2) the instantaneous location of the (x, ¢, z) vector
in relation to those regions of positive and negative util-

ity as determined by (2.108).

2.8 Utility Domains in Extended State Space

The topological nature of the domains in (x, ¢, 2) -
space in which positive utility is achieved can be de-
termined by examining the equations of the boundaries of
those domains. Since the function (2.108) is continuous
those boundaries are defined by collections of points in the
(x, ¢, z) space where utility is zero. Such points separate
domains of positive and negative utility, in general, and

are defined by

J
wa - (xR, + K )z - hz'K z = 0 (2.110)

Yoy 1Pt
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This latter equation may be written as

[XT(CT] Ez—x—z—]+ %zTKz z=0 (2.111)

Cc2

Solutions of Equation (2.111) may be considered with re-
spect to two distinct conditions on the dimensions of Kyggz,

Kcz and Ky: the case where o< (n +v) and the case where
p >(n + v):

(1) I1f p < (n + v), Equation (2,111) is satisfied by 2z =
0 and by

T -1 T
X K X
T 2 Xz 2
[lec ] = -2k, [K:z] [Kcz] [Kx ] ;0 < (n+ V) (2.112)

cz

provided [sz]T [sz] has maximal rank. Note that

KCZ KCZ

rank[ ] [ = rank[K ] (2.113a)

Ky 7z
and that ﬁ-:] has dimensions
c

(n +v) xp; hence maximal rank for Eguation (2.113a) in

this case is p. For the zero set~point regulator problem, ¢
£ 0, and therefore the # = 0 boundaries are defined by the

two expressions

and

T o kol T -1 T,
x %2 K, [sz sz] Rz (2.113b)
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provided Ky, has maximal rank (which in this case is 0),

If o= n, expression Equation (2.113b) reduces to

X makz ! [sz] 1, (2.114)

p=n

sz
(2) If p> (n +v), the maximal rank of| K,
. . . K T K -1
is n +v, and therefore, in this case |_X2Z Xz
Kez Kez
does not exist, so an explicit solution for xT is not

available. However, Equation (2.111l) is satisfied by z = 0

K -
zT a =2 [lecT] [Eii] Kz l;

cz

and by

(2.115)
P> (n+v)
provided K,~1 exists.

It follows from Equations (2.112) and (2.115) that, in
the general case, the domains of positive utility are
wedges, lying between linear subspaces in (x, c, z) space.

In the special case n = v = o=1, the positive utility
domain, as shown in Figure 2.1, lies between the plane z = 0
and the intersecting plane defined by Equation (2.112).

Zero utility, for n = v = 0 =1, corresponds to the points

satisfying

z =0 (2.116)
k k

z = =-2X_"xz2 =2c_cz 2.117
k,_ k ( )




vt oS b A PR L AR i .11 8 LA

Figure 2-1, Domains of utility in (x, ¢, 2) space for n =

v=op=1

which are the equations of the planes in Figure 2.1. The
"tilted" plane Equation (2.117) intersects the ¢, z plane '

along the line

z = -2c —= (2.118)
and intersects the x, 2z plane along the line

Z = =2X — (2.119)
k

The degree of "opening" between the two planes of Equations
(2.116) and (2.117) may be described in terms of two angles,

Oxz and O.z, defined by

"
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dz Kyz
tan Oxz = dx = =2 ;—— (2.120)
c=0 z
, dz kcz
tan 8 ., = dc = -2 o (2.121)
x=0 2
These angles are shown in Figqure 2.2.
2 z
w0
- N\ _ >0 o
. ™ X . OCZ,
Yvz “>0
>0

Figure 2-2. Description of positive utility domain size by
O%zr Ocz-

Since ky, and k, are never negative, Oy, is always
non-positive. On the other hand, k¢z typically changes
sign during the control interval (to,, T), so that O¢g
typically changes sign during this interval.

Description of the positive utility regions for the
general case appears to be infeasible due to the associated
geometrical complexities. 1In general, these regions of
positive utility are time-varying regions, since the gains
Kxz» Koz and K; are time-varying solutions of matric
differential equations. These regions may, or may not col-

lapse as t + T, depending on the properties of the set-

point/servo-command process and the disturbance process.
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Some dynamic properties of the utility function are
discussed in the next section.

2.9 Dynamic Properties of the Utility Function

It follows from the definition of the utility function:

= = (xT T — 1,7
U= - (x sz + C KC ) 2z kz Kzz (2.122)

z
that, if the disturbance w(t) is asymptotically stable,
i.e., z(t) - 0 as t+~x,one has the following

PROPERTY 2.1 1If the disturbance w(t) is asymptotically

stable, such that
lim z(t) = 0

t > (2.123)

then the optimal trajectory x°(t) has the property that

lim ¥ (x(t), c(t), z(t), t) = 0;
(2.124)

t »>

for all bounded c(t).

The known terminal conditions, at t = T, on the matrices
Kgz(t), Koz(t) and Ky(t) are
sz(T) = [O] nxp
(2.125)
Koz = [0] 40 (2.126)
(2.127)
K, (T) = [0]0xo

which leads to
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PROPERTY 2.2

v (x(T), ¢(T), 2(T), T) =0 (2.128)

Note that the value of w approaches zero continuously as
t+T, since Kyz(t), Koz(t) and Kz(t) are continuous
functions, each of which approaches zero as t + T. The

domain of positive utility for a specific problem may be

- T

very large as t - T, but at the exact time t = T, no points

in (x, ¢, 2) space have positive utility.

For t < T, the value of 4 at a particular time depends ?
on where the composite state vector lies in relation to i
domains of positive and negative utility. The conditions ?
for obtaining positive utility are stated in ;

PROPERTY 2.3 The existence of a positive utility domain ;
at a particular time t} < T does not necessarily imply g
that the value w(x(tj), c(t1), 2(t1), t1) of the §
utility function is positive at t = t1 : realization of a g

positive value of # also requires that the state vector at

t = t)1(x(t1), c(t1), z(t1)) lie in the domain of

positive utility.

It is interesting to inquire if the evolution of w

e e

(x(t), c(t), z(t), t) can be described by a differential

equation expression., One differential equation which # sat-
isfies can be derived by taking the time-derivative of @
(Equation 2,110). Part of the result may be recognized as

- ¥, resulting in

R O ST

|
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dv
gg tv =¢ (2.129)
where
TR “1gTx - )] =
o = 'X'DE(xz - KxFH]z -c [z(cz + K, _T(BR <z ]
(2.130)

T - T T
-k z [Kz + KyzTpr lBTsz - [(FH) K, + K _, FH] z

The value of d #/dt as t = T is found by substituting (x(T),
c(T), z(T), T) = 0 and (T) in Equation (2.129), resulting in
PROPERTY 2.4

aw  _ (T) - Gc(T) Trscru]z(T)
ae [cx T © ] [ ]

=[y(T) - YC(T)] T[SCFH]Z(T) (2.131)

= [e (T)] T[scm] z(T)

where y(T) is the plant output Equation (2.2) at t = T,
Yc(T) is the output Equation (2.6) of the servo~-com-
mand/set-point process at t = T and e(T) = y(T) - Ye(T) is
the servo-command (or set-point) error at t = T, Note that
the slope of # at t = T depends directly on the e(T); if
e(T) is small, d#/dt will be near zero at t = T,

The value of the utility function in the steady-state

,‘ (as t+= ) may be found, subject to the conditions of the fol-

lowing

{, PROPERTY 2.5 1If the steady-state gains E&zr EEz and

iz exist as the backward time T+=, then

VR Ry M

e
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z - kolR . 2.132)
Kcz)z k2 K,2; for 1 + = ., (

% = ’(XTsz + cC

Thus, the value of utility in the steady-state problem may
be positiye, negative, or zero, depending on where the
; trajectory lies in (x, ¢, z) space relative to the steady-
state domains of positive and negative utility.

It is also pdssible to obtain an expression for the

time-derivative of utility for the steady-state problem,

subject to the existence of certain steady-state gains.
Equation (2.129) may be evaluated under steady-state
conditions described in the following

PROPERTY 2.6 1If the steady-state gains Ky, Kygz,

Ecz and Ez exist as backward time t-+=, then

aw _ _ - ar-laTz Tz
H xf D + (A - BRB'K) sz]z

T T=
-c [Rczo +E Kcz]z (2.133)
T T
- kz [f(zD+DKz]z :
for 1t + o« .

Thus, the time-derivative of utility in the steady-state

:L problem may be positive, zero, or negative, depending on how
the matrices in Equation (2.133) are structured and where
| . the trajectory is located in (x, ¢, z) space.

The Concept of Maximum Utility. The condition for

achieving maximum # with respect to the disturbance state z

may be determined by taking the gradient of @ (Equation

2.110) with respect to z:
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T T T

V= -x"K., = cK, - 2K, (2.134)

The second gradient of # with respect to z is
V2 [Vz"”]= K,

which is negative-definite, since K; is positive definite.
Therefore we may state

PROPERTY 2.7 The critical point condition for a maximum

of & with respect to z is

T T
= 2.135
Reyg X +K, c+Kz=0 ( )
Equation (2,135) describes how the plant state x should be
related to the disturbance state z and the set-point/servo-
command state ¢ to achieve maximum utility 4 at each time t
eltg, TI.

Additional Properties of #. Certain additional

properties of the utility function 4/ seem intuitively to be
true. For example, it seems that tor a certain specified
terminal state-weighting matrix S, that the value of the
utility function # at each time t e[t,, T] would depend on
the relationship between Q and R in the performance index J,
with Q = 0 leading to higher values of # .

Some numerical examples which show the relations between
specified control objectives (such as utilization of dis-
turbances and set=-point regulation) and the values of S, Q

and R are presented in Chapter III.
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CHAPTER III

SOME SPECIAL CASES OF DISTURBANCE-UTILIZING CONTROL

3.1 Summary of Chapter III

This chapter describes the application of disturbance-
utilizing control techniques to several specific examples.
In particular, the following are considered: (a) A scalar
regulator with a constant disturbance, in which both zero
set-point and non-zero set-point operation are considered:
(b) A scalar regulator with an exponentially-decaying
disturbance, with zero set-point and non-zero set-point.
(c) The zero set-point regulation of a second-order plant
with a vector (two-dimensional) disturbance. Expressions
are obtained for the limiting values (or the limiting time-
derivatives when no limiting value exists) of the gains Kx,

K, .» K__., Kc, Kc

xc %z and Kz for cases (a), (b) and (¢c). Cor-

2z
responding expressions for systems beyond the second order
present formidable computation difficulties.

These examples demonstrate several of the characteris-
tic properties of disturbance-~utilizing controllers dis-
cussed in Chapter II, including positive-utility conditions,
the existence of steady-state values of system gains, the
impact of disturbance waveform shape on the effectiveness of

disturbance-utilizing control, and the potential for t

significant control energy savings.
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3.2 Scalar Regulator with a Piecewise=Constant Scalar

Disturbance.

3.2.1 General Results. Consider the scalar system®

X = xXx + u + wit) (3.1)

Yy = X (3.2)

where w(t) is a piecewise constant scalar disturbance which

is modeled by the system

w = Hz = 2 (3.3)

2 = Dz + o(t) = g(t) (3.4)

where H = 1, D = 0, and ¢ (t) is a sparse sequence of com-
pletely unknown impulses. The primary control objective is
set-point requlation to a specified (given) state Xgp. The
secondary control objective is to accomplish the primary ob-
jective while efficiently utilizing any disturbance effects
which may be available. The two objectives can be achieved,
using linear~quadratic theory, by minimization of the

quadratic performance index

*Scalar systems of the more general form x = a x + u + w, a
= constant, can be put in the normalized form, Equation

(3.1) above by introducing the time-scaling t + 1/ a; a = a,
and setting U = u/a,

JOTP SR YUPRPSUP . 8 ablaheittliltbiotins




2 T 2 2
Jul= % s esp(T) + Htoqu esp(t) + r u“(t)lde (3.5)

with respect to u, where s > 0, g > 0, r > 0 and egp 4
xsp - X(t)o
The family of piecewise-constant set points [xsp]

are modeled by the fictitious dynamical system

xsp = G¢c = (3.6)

& =Ec+ u(t) = u(t) (3.7)

where G = 1, E = 0, ¢ is the set-point "state™ and u(t) is a

sparse unknown sequence of impulses.

This problem is solved by applying the theory discussed
in Sections 2.4 and 2.5 of Chapter Il. An augmented vector,
(Equation 2.8), with elements x, ¢ and z, leads to an aug-~
mented system (Equation 2.9) and a performance index
(Equation 2,10) which is equivalent to Equation (3.5).
minimization of the performance index J subject to the
augmented system Equation (2.9) is accomplished by the
Hamilton-Jacobi theory. The solution of the Hamilton-
Jacobi-Bellman equation is expressed as the symmetric

non-negative definite quadratic form

V (X, t) =k X'P (t) %
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where X is the augmented vector and P (t) is chosen to
satisfy the Hamilton-Jacobi-Bellman Equation (2.12). P can ‘ 7
be written in the form of a 3x3 matrix for the problem at é
hand as follows: i
-
. kx(t) kxc(t) kxz(t) :
P - T :
P kxc (t) kc(t) kcz(t) ; '
T T o}
kxz (t) kcz (t) kz(t) ‘
P(T) =S ; §=20C T SE;
&¢=[-cle]o] (3.9)

Substitution of Equations (3.8) and (3.9) into the
Hamilton-Jacobi-Bellman Equation (2.12) results in the fol-

lowing set of six unilaterally-coupled differential

equations:
< = (- 1 Kk - g -
kx (-1 «+ - kx)kx kx q kx(T) s (3.10)
;t = (=] + }‘k ) k + : k (T) = - )‘
XC r X XC q Xc S (3.11) ;
k.. = (=1 +2 k) k. =k : k. (T) =0
Xz r °x Xz x ' X2

(3.12)

: 1
k,6 = 7 k -q: k_(T) = s (3.13)




- 1) ; kcz(T) = 0

2kxz ; kz(T) =0 (3.15)

The six scalar equationsg (3.10) - (3.15) correspond to the
general matric Equations (2.21) - (2.26), with A =1, B = 1,
R=¢, C=1,Q=q, S=s5, E=0,G=1, F=1,Hs=1 and
D=0,

The optimal control, Equation (2.17), may be written in

terms of the solution V of the Hamilton-Jacobi-Bellman equa-

tion. Thus, using the relation Vy V = P ¥ in Equation

(2.17), the optimal control for the present problem may be

written as

o) b
ut o= ox leyx + k¢ + ko 2) (3.16)

The solutions of Equations (3.10) - (3.15) which must be
determined over the interval to < t < T are obtained by
backward -time integration of Equations (3.10) - (3.15)
"starting" with the known end conditions at t = T,

The backward-time equations associated with Equations

(3.10) - (3.15) are obtained by the substitution ¢t = T - 1,
where T > 0 is "backward time." This latter substitution
transforms Equations (3.10) - (3.15) to the form (note that

()= @ /a1 in (3.17) - (3.22)):
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. l .
k(1) = (1= 2k (1)) k(1) + k (1) +q; k(0 (3.17)

]
7]

- l - . B -
Keo (1) = (1 = 2k (1)) k, (1) q: k,,(0) s (3.18)

XC

. 1
kg (D = (1= 2k (1) k(0 + k(D) 5 Kk (0) =0 (3.19)
k (1) =-L%x2 (1) +q;: k. (0) =s (3.20)
c r 'Xc q;i c *

l -
ko () =k (1)1 =2k, (1)) ; kg (0) =0 (3.21)

- - l 2 .
kz(r) = -z kxz(r) + 2kxz(T) ; kz(O) =0 (3.22)

The required solutions of Equations (3.10) - (3.15) are now
found by solving Equations (3.17) = (3.22) over the positive
interval 0 < T < (T-ty) using the "initial-condition "data
at T = 0.

3.2.1.1 Consideration of Limiting Values as T =+ «

It is readily verified that (3.1) is completely control-
lable. Therefore, since g > 0, it is assured [1l5] that
Equation 3.17 has a solution kyg(T) which asymptotically
approaches a certain positive value ix as 1T + » , That

is, the limit

13
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lim k (1) =k, k = constant >0,
- (3.23)

will exist, where ky is the unique, positive definite

solution of the "steady-state Riccati equation"

(1 -

a1 ond

kx) kx tk,taqs= 0 . (3.24)

The positive solution of Equation (3.24) is readily found to

be

k. =r (1 +/q/r +1) . (3.25)

X

For the special case where g = 0, Equation (3.25) yields

Ex =2r , q=20 (3.26)

The result of Equation (3.25), may be verified by start-

ing with the general solution of the Riccati differential

Equation (3.17) and evaluating kyi(t) as T + . The gener-

al solution of Equation (3.17) is given by (8; pg. 777]

B+ 1+ (B - 1)( )e~ 28T

(3.27)

kx(r) = r
)e-ZBr

[
]
—
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where T =T - t, and for our case, B = +Jgq/r + 1 > 0,

Letting T - « in Equation (3.27) yields the limiting solution

lim kx(r) =r (1 + /q7r + 1)

T +» ™

(3.28)

which is identical to the solution Equation (3.25) of the
algebraic Riccati equation. Note that Equation (3.27) has
other solutions that do not satisfy Equation (3.28).

The conditions for the existence of steady-state values
of kycr kxzs Kor Koz and k, (Conditions 2.1 - 2.5
in Chapter II) may now be applied to the last five
equations, (3.18) ~ (3.22).

Condition 2.1 indicates that the solution kgc(T1) Of
Equation (3.18) asymptotically approaches a unique steady-

state value kyc if, and only if,

k. <o . (3.29)

1 -
X

R

However, satisfaction of Equation (3.29) is guaranteed for
this example because substitution of Equation (3.25) into

Equation (3.29) yields

1 - % K, =-/@T+L<o0. (3.30)

The unique solution of Equation (3.18) is easily determined

to be

M -
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d (1-2K)x
koo (T = T = * Cyc® r X (3.31)
(1-z2k
where
q
c,=-s - .
Xc 1 = {3.32)
(1 -2k

Thus, the limiting value Xy, is obtained from Equation

(3.31) as

Expression Egquation (3.23) €for ky nay be substitited 1into

gquation (3.33) o obtain

Pl
|

xc (3.34)

For the special case cf g = 0, (3.34) reduces to

[}
Q

£

(]
O

(3.

(V3]
wr
~—

Application of Condition 2.2 of Chapter II shows that a

well-defined steady-state value kyp #ill exist for thais

caml = raare g
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example problem, because the disturbance model has D

and ky exists. The unique solution of Equation 3.19 is

found to be

where

Letting 1+ in Equation (3.36), the steady-state value

kxz is determined to be

Exz = 1lim kxz(r) _r (1 + Yq/r + 1).
T /a7t I

The special case g = 0 reduces (3.38) to

kxz = 2r

q=0 .

Condition 2.3 of Chapter 1I indicates that existence of a
steady-state value ko of ko(T) requires that every

eigenvalue of the matrix E in the set-point dynamic model

0,

(3.36)

(3.37) ¢

TR e

(3.38)

b

(3.39)

oy o
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Equation (3.7) have a negative real part. This condition is
not satisfied for this example (see Equation (3.7)). as we

have E = 0. Thus, for this example, no steady—-state value

. kc_of k() exists, in general. We may, however, find

the limiting steady-state slope kc of the solution ko(T)
as Tt - ® ., For this purpose, the steady-state value of

K¢o/7) may be substituted into Equation (3.20) to obtain

- 2
. . q
K. = 1lim k _(1) =
c( ) IFT
T > {3.40)
wnich snows that in bacxward-tirme - tne waveiorm <of <.i7)

approacnes a positive-siopbe ramp ia negative-slope ramp 1In
forward t:ime). Althocuagh Eguation (3.20) Zoes not nave an

asymptotica.ly stable steady-stacze soluticn in gereral, &

special case g = 0 does lead to the condition that the limi-
ting rate Eguation (3.40) is zero. The corresponding value
of }iﬂ Le(T) in that case must be determined by 1ntegra-
tion.

. Th2 solution Xs,{(t) of Equaticn (3.41, nas no
asymptotically stable steady-~state solution beczuse £ and D
are both zero in this particular example. However, the
limiting siope icz(r) as == is found by substituting the

values of %y, and ky; into Egquation (3.21) to obtain
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r q

= lim kcéT) = > 0. ]
T - ® q+r (3.41) K

&

cz

POy

It may be observed from Equation (3.41) that the special
condition q = 0 yields a limiting rate which is zero. The

corresponding value lim kco,(7) must be determined by
T+®

integration.

An asymptotically stable limiting value k, for the
solution k;(T) does not exist for Equation (3.22) because
D =0 in this example. As before, the limiting rate Ez(r)

as T - ® can be calculated rather easily. Namely, if Exz

CMEPRTET AT A . 4

is substituted into Equation (3.22) one obtains

$ w1y

B . —r(1+7/q/r + 1) 2
kz = lim kz (1) =
T + ® q+r

r (1 + /g/E 7 1)
Ya/r + 1 (3.42)

+ 2

As before, the special case q = 0 results in a zero value of
the limiting rate Equation (3.42); however, more generally,
Equation (3.42) describes a positive-slope ramp (a negative-

slope ramp in forward time) which, of course, is unbounded

TN T IR TS ORIV T  wrp By v YR GRS 3 0, ORI, v 4
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Table 3-1 summarizes the limiting steady-state gains for
this example with piecewise-constant disturbances,

Fiqure 3-1 summarizes the waveform properties of the
forward-time gain histories in this example, for general
non~negative values of s, q and r.

Only the first three gains ky(t), kygcl(t) and
kyz(t) are required in computing the optimal control u®(t)
for this example (see Equation (3.16)); however, the two
"gains" kgz(t) and ky(t), along with ky,(t) are useful
in computing the utility function .

The utility function & for this example is found from

Equation (2-108) to be

2
W= -kxzxz - kczcz - & kzz . {3.43)

The positive-utility domains for examples Oof this type were
determined in Chapter II as the "opening" between two
planes, as shown in Figure 2-1. The degree of “opening" be-
tween the planes was expressed in terms of two angles, de-

fined by
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TABLE 3=1, STEADY=STATE GAIND POR SCALAR SET-POINT
REGULATOR WITH CONSTANT DISTURBANCE

Vot e, 1w tov -
(IRt
LI el e g e "t
kxc 1 v
val vt 1
Koo v b aghy e M
v e
L9 ne amet exiats I\
.
k\,_ B limit exintx 0
(N my it eoxiats A
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X (t) limiting slope = 0
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t

2
kc(t) _——limiting slope = \—]—‘ﬂ—;
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2
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slope = -8
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Figure 3-1.
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P
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Typical forward-time gain histories for a
scalar set-point regulator with a constant

disturbance and disturbance-utilizing
control.




82
which are illustrated in Figure 2-2. In general,
non-negative values of q and r result in a bounded
steady~state value of kyz but an unbounded value.of kz
as T + » (see Figure 3-1); hence, in the steady-

state;

xz = lim sz(T) = 0 , general non-negative

T > ® values of r, @ . (3.46)
An interesting special case for this example occurs for the
value q = 0, causing the right side of Equation (3.42) to

then be zero, and giving the non-zero steady-state value of

Equation (3.46) as

§__ = lim 6__(7) = tan ~1(-2) = -63.43°, q = 0.
X2z T + oX2 ’ (3.47)
Equation (3.44) is indeterminant at t = 0 (i.e., at the
terminal time t = T); however, by applying L'Hospital's rule

to the ratio

. l .
kyz - (1 = Z k) Rep * kx
y 1 2

k, T Kz * 2 Ky,

(3.48)

it is easily determined that




lim d kxz ._i_ _
-0 \ 4 k, 0 (3.49)

and therefore, if s > 0, Equation (3.44) yields

- 1im 6__ = -90°; s >0. (3.50 ;

8
X2 1+0

in general,

In a similar manner, Equation (3.45) yields,

the indeterminant

k ©
cZ

= D —

lim tan ecz(r) - -2 . -
o (3.51)

which, by application of L'Hospital's rule gives

q

- 21T g

ecz = lim ecz(r) - 3
_1+/EZr+]]+2[l+/§Zr+I]

T /97t + 1 g/t + 1

(3.52)

The denominator of Equation (3.52) is positive for all posi-

When g = 0, the denominator is zero, in which

tive r and q.

case Equation (3.51) yields the limiting value~3cz = 0,

Therefore, the range of variations of gcz is, in general,

-90°% < §_, < O. (3.53)
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The value of 9%z at T = 0 (i.e., at terminal time t = T)

is found by applying L'Hospital's rule to obtain

lim tan 6 _ = =2 lim(¥£§>- 363

T+0 cz 0\, (3.54)
which, for s > 0, leads to the value
) =T) = lim 8 1) = +90° .
oz (t=T) rio cz () (3.55)

It is interesting to note that 8 o,(t) may change sign over
the interval t inltgy,T].

The foregoing properties of 6 yz(t) and 8,z(t) are
summarized in Table 3-2, for several combinations of q, r
and T. Some typical domains of positive utility for this

example are shown in Figures 3-2 and 3-3, for the case of

large values of T (near steady-state) and small values of

T (near terminal-time), respectively.

3.2,.2 Some Specific Numerical Examples

3.2.2,1 Zero Set-Point Regqulator; Scalar Plant,

Constant Disturbance. Computer results for these numerical

examples were obtained from a CDC-6600 program using Runge-
Kutta fourth-order integration with a computation interval
of 0.02 seconds for integrating the plant equations and the

gain equations. The ideal case of direct on-line
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'
TABLE 3-2. PROPERTIES OF THE UTILITY DOMAIN "OPENING" §
ANGLES 64,(t) AND Gcz(t) FOR A SCALAR §
SET-POINT REGULATOR WITH CONSTANT :
DISTURBANCE
N (Degrees) d
f()gi' RN qQ r ;
(steady-state) 4
00.00 q 0 r >0 é
“()3-'1.3 0 r > 0 é
§
3
F
i
t‘XZ (Degrees) <
for + + 0 (at q r ;
terminal time) i
'90.00 q _\_ 0 r ~ 0 :
‘
OCZ (Degrees)
for 1 *» w q r
(steady-state)
~63.43 1 1
-63.43 10 1 £
3
-84.81 1 10 |
t
-89.43 1 100 g
00.00 0 r ~ 0 E
¢
3 0 (Degrees) '
: cz T ;
: for : +» 0 (at q r :
‘ terminal time) 5
!
+90.00 q » 0 r ~ 0 ;
b
j

.
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_ZZZZ::::I._.:Q;_.x
) 90:7

Figure 3-2. Typical domains of positive utility in x-z and
c~z state space for large values of backward
time (t+», near steady-state); scalar plant
set-point regulator, constant disturbance,

q >0 and r> o.

N

eCZ

~ -

Figure 3-3. Typical domains of positive utility in x-z and
c-2z state space for small values of backward
time (near the terminal time); scalar plant,
set-point regulator, constant disturbance,
q>0 and r > 0,
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measurements of the entire plant state x and the entire dis-
turbance state z was assumed for these studies. This as-
sumption permitted determination of the performance of the
disturbance~utilizing controller without regard to the
imperfections introduced by the state-reconstructors.
Numerical solutions of the three differential equations
((3-10), (3-12) and (3~15)) are presented in Figure 3-4 for
the case s =1, q=1, r =1, T =6,0, These specific re-
sults may be compared with the typical histories sketched in

Figure 3-1.
3.2.,2.1.1 Negative Disturbance, Positive x{(o).

Numerical results for the zero set-point regulator with
s=1,g=o0, r =1, T=6,0, w(t) = -16.1 and x(o) = 30.0

are shown in Figures 3-5 and 3-6. Although the structure of

this particular example results in the existence of steady-
state values for the three scalar gains kg, kygz and kg

when q = o (see Fiqure 3-5) this outcome is not typical for
the general case. It may be seen that the x—-z state trajec-
tory (Figure 3-6) remains inside the positive utility sector
for each tin(ty,T] and thus the value of the utility func-
tion is positive for the whole control interval, except at t
= T. The control u® and state x for the corresponding
linear-quadratic (LQ) controller are shown as dashed curves
in Figure 3-6 for comparison. All parameter values for the
LQ controller are the same as those of the disturbance-

utilizing (DUC) case, except that the LQ example does not

IR 0 I e A WM S g e
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Figure 3-4.

Numerical gain solutions for case of: scalar
plant, scalar disturbance, zero set-point,
s =1, q=1, r=1and T = 6.0.
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utilize or otherwise account for the disturbance. Thus,

the LQ example uses the conventional LQ control u®pq(t)

a - 22 kg(t), where ky(t) is precisely the same time
function as kyg(t) in Figure 3-5. The bias effects of the
constant disturbance are readily seen in the LQ control and
state histories (Figure 3-6); these effects do not appear in
the disturbance/utilizing controller, however. Table 3-3
summarizes the terminal-time performance of this example in
terms of the components Jy, Jq and Jp of the per-
formance index J, the terminal-state regqulation error &, the
value of the control energy EU consumed during the control

interval [0, T] and the "effectiveness" parameters &y,

8y and 8g; the pertinent parameter definitions are as

follows:

2

S = % s e (T) (3.56)
T 2
Jq = %éq X (t) dt (3.57)
T 2
IJp =% ! rfu®(t)lfat (3.58)
T 2
EU = % ! (u®(t))%t (3.59)
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kz(t)
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3
0 - T T " t
[4] 1 2 3 4 5 6
sec T

Figure 3-5, Numerical gain results for scalar
zero set-point regulator with s = 1,
q=o, r=1,T=26.,0.
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Computed performance of disturbance-utilizing

scalar regulator with zero set-point, constant
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TABLE 3~3. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SCALAR ZERO SET-POINT REGULATOR,
WITH CONSTANT DISTURBANCE, w(t) = -16.1,
Xsp = 0.0, s =1, gq=o0, ¢ =1, T = 6.0,
J J xET-x(T)
m q Jt J(T) ‘T sp ‘M EU ‘E
3 (FT) ) 3
0.0021| 0. | 192.4] 192.4[92.3] -0.065 99.7| 192.]91.1
313.6 0. | 2155.| 2469. 25.05 2156.

J(T) = Jm +J +J

d X
T T
= kse?(T) + & f qgel(t)dt + %/ r u®%(t) 4t
[o] (o]
o b
u ‘DUC ="r (kxx + kyz z)
o) -b
u ILQ = -r-kxx
T 2
v & % s )] at
J.. =3
"I‘ 4 LQ 3 Duc x 100%
L0
P 4 %o = x(T) | 1q =Ixon = x(T)|
M Sp LQ _"sp DUC_ « 100%
‘xsp - X(T)lLQ
FU. . =~ EU
e & 1O DUC_ » 100%
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"Total effectiveness" &p is defined as

J -J
. -LQ ~ “puc

LQ

"Miss-distance effectiveness” &y is defined as
Ixgp = X (1) | o= lxgp = X(T) | e

& = x 1008
M |Xgp - X (T)|LQ (3.61)

"Energy effectiveness" &€y is defined as

EU, . = FU
& = —Q DUC_ « 100% s 62
EULQ (3.62)

Positive values of &, JM or ®; mean that the distur-
bance-utilizing controller has achieved a lower value of J,
absolute miss~distance or control energy consumption,
respectively, than the LQ controller. The maximum possible
values of &y, &y or € are, of course, 100%.* Note,

in Table 3-3, that the DAC controller obtains very large
positive values of &7, &y and #g. The disturbance
utilizing controller for this example uses less than 9
percent of the control energy required by the conventional
LQ controller. Moreover, the disturbance-utilizing
controller achieves a set-point error of -0.065 feet -- only

0.3% of the 25.05 feet set-point error of the LQ controller.

*Note, for example, that if Jpyc is 108 of Jyg, 7 =
90%; if JDUC is 90% of JLQ' "\‘T = 10%,

rReSevsagegpyweny

Y

WA P i 2
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3.2,2,1.2 Positive Disturbance, Positive x(o). The

previous case involved a constant negative disturbance which
resulted in a trajectory lying inside the positive-utility
domain in the x-z plane. We now consider the case in which
the sign of the disturbance is reversed; that is, where w(t)
"has a constant positive value, with all other conditions
remaining exactly the same as in the previous case. The
time functions kyx(t), kyz(t) and kz(t) are exactly the

same as for the previous case (see Figure 3-5), since they
do not depend on the specific waveform of the disturbance.
The performance for this case is summarized in Fiqure 3-7
and Table 3-4. In this example, the initial conditions
(x{o), 2z(o)) lie in the negative-utility domain (in the
€irst quadrant). However, the disturbance-utilizing control
forces the x-z state trajectory into the second guadrant,
where positive utility is available. The disturbance-
utilizing control maneuvers the system so that positive
utility is "made available" for this case during the time
interval following 1.8 seconds. Fiqure 3-7 shows how the
x-z trajectory "doubles back" on itself between 1 and 6
seconds. Although the state is driven to zero at t = 1, the
terminal-time specification is not satisfied until t = 6,
when the problem ends. The DUC uses the "extra time"
between 1 and 6 seconds to place the trajectory within the
%> o sector of the x-z plane. Note the bias effect

(Figure 3-7) of the disturbance on the LQ control, which

results in a large positive value of x(T).

argpult 5 otagrgprincave 2
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scalar regulator with zero set-point, constant
disturbance, s =1, q = o, r = 1, w(t) = +16.1,
x(o) = 30,0, T = 6.0.
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TABLE 3-4. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SCALAR ZERO-SET-POINT REGULATOR
WITH CONSTANT DISTURBANCE, w(t) = +16.1,
xgp = 0., x{(o) = 30.0, s =1, q=o0,
r=1, T=26.0,
e .
In Jo I am | € | Xp m XM & | EU &
% (ft) ) 8
puc] 0.023 | o. 2100. { 2100. {52.0 ~0.21 99.2| 2100, ]48.2 ’
'g o] 320.7 | o. 4056. | 4377. -25,33 4056.
J(T)'Jm+Jq+Jt }J
T T '
- hsel(T) + & [ gel(wat + k% s ru®d(t) at
[0} o] :
o .k
i P 2 (kyx + ky,2)
b
uolLQ = - 7 kex
T
ev &y S [u%)] 2at
[o]
J - J
gy 8 2 DUS_ x 100%
LQ
lx.. - x(T)| -lx.. - x(T)|
‘M 4 8D ILQ '"sp puC x 100%
lxsp - x(T) lLQ
EU - EU
. s LQ___ DUC . 100%

EULQ
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This may be compared with the previous case, where the nega-

tive disturbance caused the LQ controller to have a large

negative x(T).

The terminal-time performance for this case (Table 3-4)

shows that the effectiveness parameters 87, &y and &g

are all positive, indicating that the DUC performs better

than the LQ controller on the basis of J(T), miss—distance

and control energy consumption. The control energy require~

ments are considerably larger for both the LQ and the DUC in

this case, because the amount of positive utility is re-

latively small. However, the disturbance-utilizing control-

ler expends only 51.8% as much control energy as the LQ con-

the DUC accommodates the disturbance to

troller.

Moreover,

produce a set-point error of -0,21 feet versus -25.33 feet

for the LQ controller -- a miss distance only 0.8% as large

as the LQ miss distance.

3.2.2.1.3 Some Effects of Varying g/r. The

importance of the ratio gq/r has been seen in connection with

the determination of the time-varying gains for the distur-

When q = o, varying r has very

bance-utilizing controller.

little efiect on control energy EU, but when q > o, the gq/r

ratio affects not only EU, but also Jq, Jr and xgp =

x(T). Table 3-5 compares the performance for three differ-

ent ratios of q/r in the disturbance-utilizing example under

consideration. Except for the q and r values, the

conditions of this example are identical with those
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of section 3.2.3.1.1, where w(t) = -16,1. When q is

increased fromq = o to g = 1, less relative weight is
placed on terminal set-point error in the performance index
J, with the result that the terminal miss-distance increases
to 3.31 feet. Another effect is seen in the increased
control energy EU required to keep the squared state x2(¢t)
closer to zero during the control interval [o,T]). When the
q/r ratio is changed to 1/10, the control energy requirement
is brought back down to a value only slightly larger than
for the case of @ = 0; but the terminal miss—distance then
increases slightly because its relative weighting has
decreased even further. This example illustrates the
various cost trade-offs which one must consider when
choosing values of s, @ and r in disturbance-utilizing
regulator designs.

3.2.2.2 Non-Zero Set-Point Requlator; Scalar

Plant, Constant Disturbance. When the scalar system of the

previous examples is operated as a non-zero set-point re-
gulator, with a constant disturbance w(t) = -16.1 and a

set-point xsp = =10., the results of Figures 3-8 and 3-9

and Table 3-6 are obtained. Note that the ky(t), kxz(t)
and kz(t) time functions in Fiqure 3-8 are identical with
those of the previous examples (see Figure 3-5). In ad-
dition, the kgc(t), keo(t) and kqoz(t) gains are re-

levant to the non-zero set-point case considered here.
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TABLE 3-5. THE EFFECT OF VARYING gq/r ON THE DISTURBANCE-
UTILIZING CONTROLLER; SCALAR ZERO SET-POINT
REGULATOR WITH CONSTANT DISTURBANCE, w(t) =
-16.1, Xgp = 0., x(o0) =30,0, T=6,0

e e R

i
#
'
iv
s|qglr Im Jq J. J(T) Xgp = x(T) EU %
0.0021| 0. |192.4(192.4| -0.065 192. :
5.48 | 359.8 | 364.3 | 729.6 3.31 364. ‘
1| 1110] 10.80] 727.7 | 1970. | 270s. 4.65 197. :
J(M) =T kT T
T T
= yse2(T) + &/ gel(t)at+k S r u®l(t)dt
tO tO

T

EU =& J Eﬁ(tﬂzdt
(o]

o =

s




—-t
6

sec T

Figure 3-8, Numerical gain solutions for case of: scalar
plant, scalar disturbance, non-zero set-point,

constant disturbance, s = 1, q =0, r =1,
T . 6.0.




v — g —— v

ag

101

u}CONTROL X PLANT STATE
—-——— /
- ~
204 P \LQ T 40jr
o 1,72 3 4 5 ¢ pUC
c " 1 l L . -t t 20#%
sec \ 1 T
=204/ / DuC obi 22 ¢ N E t
/ ~. . sec \
-404/ -20- /"‘~\ P
/ LQ \\
AY
-6 0+ -40
24  X=-z TRAJECTORY z 4 ©-2 TRAJECTORY
-10 of 10 20 30 -10 of 10
L 1 L L X L 1
xs' Can ¢
'Elo X -z PLANE SET
| 1 TRAJECTORY 1= 10+
i N {
_//-20' \  “t=0 *-204
t=6 t=]1
t=2 C-2
t=3 PLANE (POINT)
t=d TRAJECTORY
t=5
"OPENING" ANGLES ¥  yrriLITY
8 __ 9 SEC T A
cZ X2 1l 2 3 4 6
100 0 el L 4 b= 10004
Degrees t
80 -20+ 800
60 =404 //raxz 600-
40-6 400+
20-80 8 2004
cZ
0-1004 C T T T T T Tt
1 2 3 4 5 6
T

Figure 3-9,

sec

Computed performance of disturbance-utilizing
scalar regulator with non~-zero set-point, con-
stant disturbance; s = 1, q =0, r =1, w(t) =
-16.1, xgp = -10,0, x(o) = 30.0, T = 6,0.
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TABLE 3-6. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ i
CONTROLLER; SCALAR REGULATOR WITH NON-ZERO
SET-POINT AND CONSTANT DISTURBANCE; w(t) = 1
-16.1, xgp = -10.0, x(0) = 30,0, s =1, K
gq=o0,r=1,T=26.0 [

J J J g | € %gp = X(T) €M EU

ok

-2
DUC| 0.2122x10 0. 193.1}1 193.1{92.2 -0.065 99.71 193.1}91.0

LQ 313.6 0. 2155.] 2469, 25.05 2155.

o0
oc
i £ Ay R

VR SO

J(T) = Jm + Jq + Jr

T T
=y se2(T) +% / qed(w)at +% S ru®?(vrat
to to

b
-7 kyx+ k e+ k 2)

u?| =
DAC
o 3-9-
u ILQ r (kyx + ko ©)
J - J
8. 4 LQ,J DUC_ « 100%
LQ

% o, = x(T) | —Ix - x(T) |
¢ & _sp 1Q “sp DUC  x 100%

M
b‘sp = X(TW ‘LQ
EU - EU
4 Q DUC
JE 2 G x 100%
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Figure 3-9 shows that the DUC obtains positive utility for
the 6 second control interval (except at t = T). The x-z
trajectory remains in the positive utility domain of the x-z
plane for the first 5.5 seconds of the control interval as
it moves through the fourth guadrant toward the set-~point
(xgp = -10). The c-z "trajectory" for this example is the
point (¢ = =10, z = -16.1). This point "trajectory” lies in
the positive utility domain of the c¢-z plane during the last
0.9 seconds of the control interval. This may be verified
by noting that 8.z is greater than 58.2 degrees (tan~1
16.1/10.0) for the last 0.9 seconds, which means that the
c-z point "trajectory" is inside the positive utility
domain. The net result of the actions of the set-point
"command" and the disturbance is that positive utility is
"made available" for the whole control interval. The
constant disturbance has a very detrimental effect on the LQ
control and state histories (Fiqure 3-9), resulting in a
large set-point error. The terminal-time performance for
this example is shown in Table 3-6. Note tkat the control
energy EU required by the DUC in this example is only
slightly larger than that required by the zero set-point
regulator (compare with Table 3-3). This is apparently due
Lo the fact (observed above) that the x-z trajectory and the
c-z trajectory are complementary, in terms of the respective
time intervals during which they lie in positive utility
domains. The effectiveness parameters €T, EM and 55.

are all positive and quite large, reflecting the superior




vertformance of the DUC in terms ot pertormance index J,

set-point error and energy consumption,

3.3 Scalar Regulator with an Exponentially-Decaying
Disturbance

3.3.1 General Results. In this example we consider

tne scalar system of Equations (3.1) and (3.2}, where the

disturbance w(t) is exponentially decaying, so that

wit) = C,e , a>0 {3.63)
w = Hz , H = {1) (3.64)
z =Dz + 0(t), D= =a (3.65)

where o (t) is a sparse seguence of impulses. The dual
control objectives of set~point regulation and efficient
utilization of available "disturbance enerav" are to be
realized, as before, by minimizing the quadratic performance
index J (Eguation (3.5)). The s:t-point is represented as
the output of the dynamic system Equations (3.u) and (3.7),
and the control will be found as in Equation (3.16). The
set of unilaterally-coupled differential Equations (2.21) -

(2.26) for this example turns out to be

F )
]
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i Y — 1 g -
| kxc = (-1 + - kx) kxc + g ; kxcv(T) = -§ (3.67)
]
d . l
4 = (- - - . =
‘ kxz (-1 +a+ - kx)kxz kx ; kxz (T) 0 (3.68)
x = 1 2 _ . -
kc =z kxc q : kc (T) = s (3.69)
= - 1 m =
kcz = ak 2 + (-1 + c kxz ) kxc : kcz(-) 0 (3.70)
kK =20k + k% -2k ; k. (T) =0 (3.71)
2z z r Xz xz ' z *
Equations (3.66) - (3.71) correspond to the general

Equations (2.21) - (2.26) with A =1, B=1, R=r, C=1, Q
=q, S=s, E=0,G=1,F=1,H=1and D= -a. The
corresponding equations in backward time (T =T - t) are

— - 1 . =
Ke(T) = (1= 2k (DK (D+ k (0+q; Kk (0) =s (3.72)

y 1 -
kxc(r) = (1~ T kx(T)) kxc(T) - q; kxc(O) = ~-8 (3.73)

Keg (1) = (L= a = 2k (tk (1) +k_ (1) ;

b4 (3.74)

kxz (0) =0




1) = - 2wk, -t }\ + 2k, 1 K (0) =0 . (3.77)

As 1n the case ot the constant disturbance, the steady-

state values ot k‘(r) and kwc(!) are tound to be

k‘ = r(l + vq/r + 1) (3.78)

- !

Kk, . ® —— — (3.79)
Xe vl]/r + 1

Equation (3.74) has the solution

-k

k.. = 1lim k__(1)= X - . (3.81)
xz 0 Xz (1-a- Lk

—

2]

Crarg
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When Ex from Equation (3.78) is substituted in Equation

(3.81) the result is

- r ( 1+ /9/r + 1)
xz a + /q/r + 1 . (3.82)

As T +» = it is found that no steady-state value exists for
kc(t) for general values of q and r. However, the asymptotic

slope ic does exist in backward time, and is given by

(3.83)

kcz(” = Q k

and therefore
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Substituting the known values of ky. and ky, into
Equation (3.85) gives
% = q/a [ l ~a
c
) e T ————y
Vv 9, + 1 a + v CPR + 1 (3.86)

When the expression for Exz is substituted in Equation

(3.77) the result is

a+vg, +1 a + Y4

. NERN r(1 + Y9/t I
kz = -2akz -r + 2 (3.87)
/x /T +1

Solution of (3.87), subject to the terminal condition

kz (t = 0) = kz (t = T) = o, yields the expression

e | 2
_,=2aT vq/_ + 1
kK (1) = (1 ea ) r 1 + r
Vg7
+ +
* r+l (3.88)
1+ Y 4
+ 2r

a +Vq7r + 1
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In the limit T + ® , Equation (3.88) yields the steady-state

value

2 Vi
1 V9 + 1 1 VY + 1

sl

T+ a+\/q—'/r_+_—1_ a+Vq/r+1

(3.89)

which is positive for all g > o, r > o, 2 > o. Table 3-7
sumnarizes the steady-state values of gains for the general
case nd for the special case of @ = o. Note the existence
of steady-state values kg, kcz, and k; for the special

case q = 0., These results may be compared with the constant
disturbance case (Table 3~1) where a = o. A noteworthy
special case can be seen in Table 3-7 corresponding to the

value a = 1 which leads to

=l

cz (3.90)

Figure 3-10 shows typical gain histories for the case of the
exponentially decaying disturbance.

For this example, steady-state values of 68y, (see
Table 3-8) are non-zero, for general non-negative values of
q and r. This behavior for the case of an exponentially-
decaying disturbance is in contrast with that for the case

of the constant disturbance, where the limiting value éxz

T
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TABLE 3-7. STEADY-STATE GAINS FOR SCALAR SET-POINT- f
REGULATOR WITH EXPONENTIALLY DECAYING [
DISTURBANCE. %
i
|
f For q = 0, !
: For ¢ > 0, r ~ 0, « >0 s 0, w> 0 :
| ;
kx r ( 1+ Yq/r + 1) 2 r
- -q
XC i — 0
vq/r + 1
K r (1 +~gq/r + 1) ) _2r
Xz a + /q7r + 1 ' a+]
;c no limit exists 0
; q/a 1l - a )
°® A/FFT \a+ @ETI)
;z r | 1+ /9/r + 1 2+ 5 ( L+ vq/ty + 1 2r
2a a g/ ¥ 1 a + v/g/r + 1 (a + 1)2
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. Figure 3-10. Typical forward-time gain histories for a
scalar set-point regulator with an expo-
nentially-decaying disturbance and distur-
bance-utilizing control.
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is zero for general non-negative values of q and r. The
existence of finite values of k, prevents the positive
utility region from collapsing for large 1, and the larger
the value of o, the larger the value of 64, as T + = .,

For q = o, it is found that

lim tan ze(r) = -2 (a+1),g=o0 ?

T -»c0

(3.91)

and therefore, when o = o, the limiting value of 8y, is

~63.43 degrees, which is the same value obtained for the
case of a constant disturbance. Thus, for the exponential
disturbance, the limiting angle is more negative than ~63.43
degrees.

Steady state values of 6., are particularly sensitive
to a; the value @ = 1 is the critical point which determines
whether positive or negative values of 8., are obtained as

T+ ", Table 3-8 lists some typical values of gcz and

exz-

3.3.2 A Numerical Example: A Scalar Regulator with

Non-Zero Set-Point and Exponentially-Decaying Disturbance.

In this example, the scalar system of the previous examples
is operated as a non-zero set-point regulator with an

exponentially—-decaying disturbance, where

*Note that Ecz (in Table 3-7) changes sign as o changes from

values less than 1 to values greater than 1.
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TABLE 3-8. PROPERTIES OF THE POSITIVE-UTILITY DOMAIN
"OPENING" ANGLES @ y; AND 6 o, FOR SCALAR
SET-POINT REGULATOR WITH EXPONENTIALLY DE-
CAYING DISTURBANCE

i
!
!
i
¢
i

ze {(Degrees)

1 for 1 » @ q r a
| . (steady-state) ;
-75.96° 1 1 1 :
. - %
-87.44 1 1 10 ;
i
-75.96° 0 r >0 1 !
-65.56° 0 1 0.1 :
£
exz (Degrees) ;
for © - 0 (at q r a ¢

terminal time)

-90.00° q

| v
o
2}
v
o
R
{wv
(=]

ecz (Degrees)

for v + w q r a
(steady-state)

-68.96° 1 1 0.1 ;
o :

+80.37 1 1 10.00 :
o

+90.00 q>0{r>0|aq-w ;
o i

00.00 0 r >0 a >0

00.00° q>0lr>o0 1

6., {Degrees) :

for 1 » 0 (at q r a
terminal time)

7/

>0]la>0 ¢

.
A

+90.00° q>0]r
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wit) = - 16.1 e -1t . 4 = 0.2 (3.92)

and xgp = -lU.0. The numerical solutions of the six
unilaterally-coupled differential equations (3.66) - (3.71)
for this example are shown in Figure 3-11. Note that
steady-state solutions exist for all six gains in Figure
3-11. The performance of the disturbance-utilizing con-
troller is summarized in Figure 3-12 and Table 3-9. Those
results may be compared with the results obtained for the
constant disturbance (Fiqure 3-9 and Table 3-6). The x-z
trajectory for the present example lies in the positive
utility domain for about the last one second. Compared with
the constant disturbance case {(Table 3-6) the DUC 1n the
present case reguires sligntly more control energy, because
less "free energy" is available in the decaying disturczance.
Likewise, the LQ regulator requires less energy in the
present case, when compared with Table 3-6, pecause it nas
less disturbance to overcome. The LQ controller (Figure
3-12) shows the effect of the disturbance by driving the
state x t0o a large set-point error {al:ndugh not as larce as
in the case of the constant disturbance), The disturbance-
utilizing controller achieves large pcsitive values of &7,
&4 and &g, showing that the DUC is much more effective

than the LY regulator, in terms of miss-distance and enerjy

consumption.
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Mumerical gain solutions for case of scalar
set-point regulator with an exponentially-
decaying disturbance and disturbance-utilizing
control; s =1, gq=0, ¢ =1, a=20,1, T =
6.00
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Figure 3-12,

Computed performance of disturbance-utilizing
scalar regulator with non-zero set-point and

exponentially-decaying

disturbance; s = 1,

q=0,r¢r =1, w(t) = ~-16.1 exp (=-0.1 t),
Xsp = -10.0, x(o) = 30.

0, T =6.0.
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] TABLE 3-9. COMPARISON OF PERFORMANCE OF DISTURBANCE-
: UTILIZING CONTROLLER AND CONVENTIONAL LQ
¢ CONTROLLER; SCALAR REGULATOR WITH NON-ZERO

SET-POINT AND EXPONENTIALLY DECAYING DIS-
TURBANCE: w(t) = =16.1 e~0.1 % xg,
-10.0, x(o) = 30.0, s =1, g=o, r =1,

T = 6.0
1 ! T - T e

. g R LE IS S FL £

1 ' sp ‘“ *!

| ‘ prc fo oot d i o] 2seloeel -0.072 99.5] 235,0|83.0
i % .
: N 1191 0.0 137 0]1492.0] X 19.43 1373.0] ¥
g , . / §
? J(T) =J_ +J_+J ?
m q r :
[
2 T 2 T 02 ¢
= ¥se" (T) + % [ ge“(t)dt +% y r u "(t) dt :
to to L
u® (k.x + k c + k Z) :
DAC r X Xc X2 :
3
u°=-g(kxx+kxc‘:) ‘
L ;
r ;
T %
o 2 i
EU = ¥ [ [u (tﬂ dt ;
| i 3
, i
J -J ;
&, & & DUC x 100% ?
LQ ¢
;
: s

X

x 100¢%

sp x(T)lLQ




3.4 A Second-Order Plant with Zero Set-Point and an

Exponentially Decaying Vector Disturbance

the system

which may be written in vector-matrix format as

k = AX+Bu+ Fw

118

3.4.1 General Results. In this example, we consider

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

where the disturbance w is assumed to be a two-dimensional

vector whose elements are decaying exponentials of the form

!
O

wl(t)

[
0

wz(t)

(3.98)

(3.99)

RN Y a4

s

0.5 7\ SRR o b A N X




Following the disturbanc:-modeling procedures outlined in

Chapter I, we have

zl =-0a) 2z +0, (t) (3.100)

(3.101)

(3,102)

(3.103)

where ol,(t) and oz(t) are sparsely-populated impulse

sequences. The relevant system parameters for this example

The two control objectives for this example are to

achieve simultaneous set-point regulation of the two stater

x1(t), x2(t), while efficiently utilizing any available

energy of the disturbances. These objectives will be

achieved by minimizing the performance index

AR WK Cr iy AR, | T
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. T
5 = LeT(mse( + %_/ [eTitrgett) + v ((e))2] at (3.104)
2 t
0
where e(t) = xsp - x{t) . Q, S and r tor this example are

1 o 10 0
Q=ly of , 5=]o o] ,r=1

As T+>, steady~-state values exist for the matrices
Ke(t), Kyp(t) and Ky(t), because the pair [A, B] is
completely controllable and D is the system matrix of the
asymptotically stable system Equation (3,103). Therefore,
the conditions for the existence of solutions of the
algebraic equations involving ﬁx, sz and K, are auto-
matically satisfied, as was shown in Chapter II, The three
algebraic (matric) equations to be solved for the case
[+ gre

(-A+BR‘1BTRX) - R _A- cTac = o (3.105)

1

- RXFH - K. D=0 (3.106)

-1_T= -
(-A +BR "B Kx) K, xz

A

- - = - by 3 Tz v al =
-(K.D + D'K_.) + K_BR °B sz - DFH) sz + hleﬁ] 0(3.107)

B3 " ey ACNPUSEPICS . . W v
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Substitution tor A, B, ¢tc. in these aguations leads to
twelve simultaneous aluyebraic egquations to be solved. When

these equations are solved, the tollowing expressions are

obtained for the steady-state gain matrices:

) 5 Y ’
R = \ (3.108)

e 2 nlr\ + 1) a, r 7]
(azr5 + JEV alr& + 1) m'z"rH + 2 aqrs + 1)
sz - R (3.109)
e (V2 o+ aer) r ({2 uer + 1)
(ai rH + J? aIIH +1) (agrh +¢3\‘qu + 1)
L - -

[t is noted that for the special case @) = 0, @y = 0o

Equation (3.109) yields:

rs Q
limK - 1.
XZ ﬁ r 't r
(3.110"
01*0
32*0




- The elements of K, are tound to be expressed as follows:

M4
-

Sa
L
— o) —
2 r3/4<xzr5 +2J7 7 1)
- (3.111)
“11 2
2. Y 5 h
(ajr’ + Je a ro o+ 1)
k = k =
%12 Z1
(3.112)
a,r [(a1 a, + alz) e+ 2 (ay + az)rk + 1 ]
{a, + a,) (a ”rs +J2 a,r° + 1) (a 2r5 + 2 a rg +1)
1 2 1 1 ‘ 2 2
r(J2 azr& + 1) (2 022r5 + J2 azrk + 1)
K = (3.113)
2z ) .
22 2 az(mﬂztk FJ2 awrh + 1 )2

3.4.2 A Numerical Example. ULet T = 6.0, C} = =-lo.l,

Cy = -16.1, ¥ = 0,1 and ®2 = 0.,7. The latter values

imply that

-0.1 0 .
0 -0.7 (3.114)

The computed gain matrices Ky(t), Ky,(t) and Ky(t) for

this example are shown in Figures 3-13 and 3-14. Note that

the elcments of each matrix approach steady-state values tov

r+o in this example. 0Of particular interest in Figure 3-13
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is the fact that ky,,(T) = 10, which results from the
weighting of 10 on the position state in the terminal
weighting matrix S. The remaining elements of Ky are zero
at t = T, of course, because the remaining elements of S are
zero. The DUC uses both matrices, Ky(t) and Ky (t),

while the LQ controller uses only the Kyx(t) matrix. The

matrix K,(t) in Figure 3-14 is not required for imple-

menting the DUC control law, but is used in computing burden
and utility for analysis purposes.
The control histories for the DUC and LQ controllers are

shown in Figure 3-15., The DUC accomplishes most of its

control action early in the control interval, while the LQ
controller must develop a significant amount of control near
the end. This appears to be due to the fact that the LQ
controller takes cognizance of the disturbance only through
the effects that the disturbance has on the states of the
plant, while the DUC has current information on the
disturbance.

The plant state history (Figure 3-15) shows the action

of the LQ controller in driving X3 (T) to a negative value
(-6.6 feet) in response to the negative disturbance; the
DUC, however, drives x]1(T) much closer (to within 0.05
feet) to the desired set point in the face of the same
disturbance. The DUC also produces a smaller value of
x2(T), although no terminal weighting was placed on .5(T).

The utility (Figure 3-15) has a large positive value at

t = o, but is quickly driven negative, evidently because of




Figure 3-13.

4 2.4 2.4 ke Ky
12, 22
k. N\

6 1.6 1.6 X217\

\
8 0.8 0.8{ K_

T110\
0 0 0 Y — v v —
o 1 2 3 4 5 6

k k A
X271 ¥25;
4.0 2.0 4
3.2 1.6 -
2.4 1.2 -
1.6 0.8
0.8 0.4 -

0 0
0

Computed gain matrices Ky(t) and Ky,(t)

for a second-order plant with disturbance-

utilizing controller; exponentially-

decaying vector disturbance witha ] = 0.1

and ap =0.7,
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the negative value of x) near t = 1., After x; becomes
positive at t = 2, the utility becomes positive again, and
remains so until the terminal time at t = 6. It should be
noted that this example is not designed to achieve ultimate
utility, since Q is not zero. The particular Q matrix
chosen in this example encourages the position state xj(t)

to be driven rather guickly to a small value, as Figure 3-15

shows. There is, therefore, a trade-off between keeping
x1(t) small and efficiently utilizing the disturbance in
this example. Even so, a significant amount of positive
utility is "made available" by the disturbance-utilizing
control.

Table 3-10 shows that the DUC is more effective than the
LQ controller on the basis of performance index J, position
{x1) set-point error, velocity (x3) set-point error and
control energy consumption. This is reflected in the large
positive values for :he effectiveness pararo-ters &,
Sy1, #M2 and &g. Relative to the stated control ob-
Jectives tor this example, the disturbance-utilizing con-
troller achieves a position set-point error of -0.05 feet,

compared with 6.6 feet for the LQ controller and consumes

only 40% as much control enerqgy as the LQ controller.
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Figure 3-15. Computed performance of second-order
disturbance-utilizing zero set-point
- regulator with asymptotically-decaying
vector disturbance; wj(t) = =-16.1 exp
(<0.1 t), wa(t) = ~-16.1 exp (-0.7 t),
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TABLE 3~-10. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SECOND-ORDER REGULATOR WITH
ZERO SET-POINT, VECTOR DISTURBANCE WITH
wi(t) = -16.1 exp (-0.1 t), wp(t) = -16.1
exp (-0.7 t), xl(o) = 30., Xy o) = 0.,
T=6.0, r =1,

10 0 1 o0
S = , Q = .
0 0 0o o )
X =X (T) X _X
J J J lopl 2772T 1 .
M R{ Jg(m | ¢ SP & SsP & il
@ v Fm) | $h /sy stz | BV | oF
0.301 0.301
DUC {0.01 XlOb 174. X106 55.1 -0.05 99,2 ~10.5 59.5§174.]160.4
0.670 0.671
LQ 216. XlO(‘ 439, X106 +6.6 ~25.9 439,
J(T) = JM + JQ + JR
T T T 2
= yeT(T)Se(T) +% ; e  (t)Qe(t)dt+y [ r [u®(t)] at
0 (o]
o = - 1 /T
u lDUC r B [Kxx + sz z ]
) = - 14T
u 'LQ = B Kx X
J -J
5, & 4 DUC_ x 100%
LQ
- | -
. 2 lesp } O g X %1 (M | pye
Ml - ( , x 100%
x x, (T)
lep 1 LQ
. ‘xZép = XM g Ixg = % (M pye
M2 Q ] . x 100%
X - x4, (T) |
2.p 2
EU - EU
ey & “%U DUC_ & 100%
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CHAPTER 1V
APPLICATION OF DISTURBANCE~UTILIZING

CONTROL THEORY TO SOME MISSILE - INTERCEPT PROBLEMS

4.1 Summary of Chapter IV

This chapter discusses the application of disturbance-
utilizing control theory to missile guidance problems con-
sisting of interception of air defense targets and homing on
ground-based targets, in the face of realistic disturbances.

The air defense problems are studied by using a general
planar model and solving for the optimal (disturbance-
utilizingy) control forces along the interceptor missile's
longitudinal and lateral axes. The problems of homing on
ground-based targets are studied via a so-called "small
line-of-sight angle” model and solving for the optimal
(disturbance-utilizing) control forces normal to a reference
line-of-sight line passing through the target position.

In each case the closed-loop performance of the miss le

with disturbance-utilizing control is analyzed in terms of a

performance index J and related key parameters such as term-

inal miss distance, control energy requirements, and fuel
expenditure. In addition, the "effectiveness" of :he

disturbance-utilizing controller is determined, in each

12¢9
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" intercept,/homing problem, by comparing its performance with
that of the corresponding conventional linear-guadratic con-

troller, under identical disturbance input conditions.

4.2 A Planar - Motion Missile - Intercept Problem with

Maneuvering Target and Disturbance-Utilizing Control

4.2.1 Mathematical Model. 1In this section we will be

concerned with problems of missile-intercept - tasks of
maneuvering the position of an interceptor missile so as to
coincide with the position of an air target - in the face of
disturbance effects which may, or may not, be detrimental to
the intercept objective. The geometry for a planar-motion
version of this problem is shown in Figure 4-1, where the
origin of the coordinate system is located at an arbi-
trarily specified ground point and where, at each time t,
the target position (XT1l, XT3) and missile position (XMl,
XM3) are dependent on the initial conditions at time tg,

and on the respective applied forces, including disturbance
forces.

The forces applied to the missiles are assumed to be the
net horizontal and vertical components muy and mu,, re-
spectively, of the control force (thrust components}), and
the net horizontal and vertical components mwp) and
mwp2, respectively, of the disturbance forces that may bde
acting on the missile. The parameter m is the mass ot the
missile; uy and u; are the horicontal and vertical mis-

sile accelerations, respectively, due to control torces;
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Figure 4-1, Geometry of planar~motion missile-intercept
problem,
and wp) and wpo are the horizontal and vertical missile
accelerations, respectively, due to disturbance forces.
The horizontal acceleration wyp)(t) of the missile due
to disturbances will be modeled as the superposition of two

terms

wml(t) = WIND1 + D 1 (4.1)

where WINDL is the horizontal missile acceleration caused by
wind forces and Dl is the horizontal acceleration caused by
aerodynamic drag forces. Uikewise, the vertical acceler-

ation wmz(t) of the missile, due to disturbances, is

modeled as
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wmz(t) = WIND2 + D 2 + GRAV (4.2)

where WIND2 is the vertical missile acceleration caused by
wind forces, D2 is the vertical acceleration due to aero-
dynamic drag and GRAV is the acceleration of the missile due
to gravity force.

It is assumed that, from the viewpoint of the inter-
ceptor, the motion of the target is "uncontrollable" and is
not known a priori. Thus, the target motion may be viewed
as being caused by the horizontal and vertical target dis-
turbance forces my w¢)(t) and mg we2(t), respectively.

It is convenient to formulate this intercept problem

using the relative motion model

= T
Yy = (xl' le X3, x4)

where Xy and x5 are the horizontal and vertical posi-
tions, respectively, of the missile relative to the target

and Xy and x4 are the horizontal and vertical time de-

rivatives of Xy and Xqr respectively. The corresponding
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mu, \ ¥3 RELATIVE POSITION, VERTICAL
mw, (t)
mul
INTERCEPTOR mw (t)
MISSILE
. LX) RELATIVE
TARGET POSITION,
HORIZONTAL

Figure 4-2. Relative motion coordinate system for
planar-motion missile-intercept problem.

relative coordinate system is shown in Figure 4-2, where the
origin is located at the target position,

This choice of relative coordinate system facilitates the
representation of all forces acting on the target and mis-
sile as net forces acting solely on the missile.

The horizontal acceleration of the missile produced by

this net force is

u, + w

1 (t)

1 (4.8)

where w)(t) is the relative horizontal disturbance-induced
acceleration of the missile with respect to the target, and

is defined by

wplt) = wo, (£) = w., (%) (4.9)

DrEEr a.‘wm + "
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The vertical acceleration produced by the net force on the

missile is

uy + wyl(t) (4.10)

where the disturbance-induced relative vertical acceleration

prerer s ey e e e it Sl

ot the missile with respect to the target is

W (£) = woo(t) = W, (t) (4.11) :

It is assumed that on~line, real-time measurements of
each of the plant states are available from high-quality

track data, so that the output vector y has Xpr X0 Xq,

and x4 as its four elements,

Equations (4.3) - (4.7) may be written in the compact

form :
; = AX+Bu+Fw (4.12) %

y = Cx (4.13) )

3

where {
¢

i

o 1 o0 o %

»

0 0 0o 1 I

0 0 0 0 !
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It is assumed for this problem that the unknown dis-

turbances w} and wjp can be accurately modeled as

random-like linear combinations of constants and linear

functions of time (ramps) as follows:

wl(t)

]
(@]
=
+
(@}
N
t

(4.20)

wz(t)

\
0
+
0
rf

3 4 (4.21)

where C;, C3, C3 and C4 are unknown “constants"
which may change from time-to-time. Equations (4.20) and
(4.21) may thus represent, at each time t, any possible com-
bination of bias and ramp disturbances in the control inter-
val [to,T J In accordance with standard DAC protocol, it
is assumed that the jumps in the Cj are not spaced "too
closely” along the time axis.

The dynamic model representing the disturbance process
is constructed by finding a system of differential equations
which wj(t) and wp(t) satisfy. For the assumed waveforr.

descriptions, Equations (4.20) and (4.21), such a system is

2y = 25+ 0y, (¢) (4.22)
2, = 0y, (t) (4.23)
2y = 2, % 0y, (b) (4.24)
24 = 0,,(¢) (4.25)

wl = zl (4.26)




where the aij(t) represent sparsely-populated impulse
sequences.

Equations (4.22) - (4.27) may be written in compact form L

as
z=Dz+ a(t) (4.28)
w=H2z (4.29)
where
o1 o0 o0
p=|0 0 0 Of (4.30)
o0 0 1
0O 0 0 0
i1 o o o 4.31
H'[o o 1 o] (4.3
and
T
g (t) = [cll' O1pr Ooyv 022] (4.32)

It should be noted that there is a distinction between
the assuned disturbance model represented by equations
(4.28) and (4.29) and the disturbance inputs that will
actually be used in later simulation runs made for this
problem. The actual disturbance inputs in this problem fall

into two categories:
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(a) Inputs with waveform structures that are modeled
exactly by Equations (4.28) and (4.29); for instance: grav-
ity effects (a constant acceleration), and target maneuvers
(a combination of ramps and constant levels of accele-
ration).

(b) Inputs having waveform structures that are modeled

approximately by Equations (4.28) and (4.29); for instance:

acceleration disturbances due to aerodynamic drag on the
missile (a slowly varying nonlinear function of time), and
acceleration due to wind (also a nonlinear function of time,
but often a more rapidly-varying function than drag).

The specific disturbance waveforms used in the simula-
tion studies of particular cases are discussed in Section
4.2.3.

4.2.2 Control Objectives. The planar missile-intercept

problem will be formulated as a zero set-point regulator
problem, where the primary control objective is to regulate
the relative position states x; and x3 close to zero.
The secondary objective is to accomplish the primary ob-
jective in such a way as to utilize any "free" energy which
may be available in disturbances such as winds, aerodynamic
drag, gravity and target maneuvers.

These dual objectives will be met by minimizing the

quadratic performance index

e AL IR T % AT A RS T

T
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T
3=3el(Msem + 37/ [eT(t) Qe (t) + uT(t)Ru(t)] at  (4.33)
t
where e = xgp -x = =-x, for this zero set-point case.

The weighting matrices S, Q, and R used in this problem

are

S11 0 0 0
0 0 s33 0
0 0 0 0
0 ¢ 0 0
0
=90 0 (4.35)
0O o0 0 0
0 O 0 0

x R-[l 0] (4.36)
0 1

v

ot YRR NE v EERVR TINIMNIIRp o O a =




where the constant values s)) and s33j are specified in

the particular case considered. Recall (Section 2.3) that
it is required, in general, that S and Q be symmetric, non-
negative definite matrices; and it is convenient that

S + Q be positive definite. However, since the plant
Equations (4.3) - (4.6) for this problem are in phase vari-
able canonical form, it is permissible to relax these con-
ditions to allow an S matrix which has zero weighting on the
"velocity" states and allow a zero Q matrix. The control
objectives are achieved by minimizing J with respect to the
control u(t), subject to the plant Equations (4.3) - (4.7)
and the disturbance‘Equations (4.28) and (4.29).

4.2.3 Discussion of Results. The planar missile-

intercept problem defined in Sections 4.2.1 and 4.2.2 is
solved by applying the theory of Section 2.4, which leads to

the composite state vector

®e
il
N[x

' (4.37)

the composite system equation

po [ re[Bee 2] e

YRS PP A RTIRAD 4 20 B 1T
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The corresponding performance index (equivalent to Equation

(4.33)) is then expressed as

- - T -
J = X (T)8 X (1) + & J XT(e) @ %)
2 2 to
(4.39)

+ ul(t) Ru(t)] dt

where S = CT s C, C = (-clo] and Q@ =CT g C.
The optimal control for the problem at hand is found

from Equation (2.27) to be

o _ _ o~1;T
ua = R °B [Kx X + sz z] (4.40)

where it is assumed that the plant state x is obtained from
direct measurements of the position and velocity of the
missile relative to the target (as from high-quality radar
tracking measurements, for example), and the disturbance
state z is obtained from an ideal state reconstructor
(estimator).

The assumption of an ideal disturbance state estimator
for this problem may be justified on two grounds:

(a) Estimation of the disturbance state vector z may be
performed with a high degree of accuracy if the estimator is
designed to properly account for the class of disturbance

waveforms to be encountered, assuming measurement noise is

negligible. For a design that meets this criterion, the

4 e e

Rt d e T T I APPSR

KD

6




required degree of accuracy is limited primarily by the
number of integrators and amplifiers used in the design,
which can be implemented in large numbers by inexpensive,
compact integrated circuit assemblies.

(b) The purpose of the present work is to investigate
the role of disturbance utilization in missile-intercept
problems. The assumption of ideal disturbance state es-
timates allows the analysis to be clearly focused on the

disturbance-utilization aspects of the problem, as they are

influenced by the waveforms of gravity, and target maneuver,
without regard for effects of sensor imperfections.

The gain matrices Kx(t) and Kyz(t) in Equation (4.40)
are obtained for this problem by solving the matric dif-

ferential equations

K, = (-A+BR™ T

T T T.. . _AT
B K,) K ~K A-C'QC ; K _(t)=C'SC  (4.41)

Y — -1,T T - - . =0 .
sz =(-A+BR "B Kx) Kz KxFH KyD i sz(t)-O (4.42)

Although not required for implementation of the control law

Equation (4.40), the equation for K;(t)

e S T T R
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T Tupn™
Kz= - (KZD+D Kz)+szBR

1T
BKx

T .7
2 BFH) sz+sz FH] :

(4.43)
K,(T) =0

will also be solved to allow computation of the utility
function # for analysis purposes. For the simulation
studies of this problem, the matric functions of time
Ke(t), Kyz(t) and Kz(t) are obtained by forward-time
solution of Equations (4.41) - (4.43) on a digital computer
as t progresses from to(=0) to T, For this purpose, a
fourth-order Runge—-Kutta integration routine is used on a
CDC~6600 computer (integration of the plant Equation (4.12)
is also:performed in this way). Initial conditions for the
forward integrations of Equations (4.41) - (4.43) are ob-~-
tained by first performing backward-time integrations of
these equations, starting at a specified terminal time T,
with the known terminal conditions, and integrating back to
the starting time tg = 0. The element values of the re-
spective gain matrices (Ky, Kyz and Kz), at t = 0,
are then saved, to be used as the initial conditions for
subsequent forward-time runs. This procedure avoids the
large computer storage requirements that would otherwise

required to store the time functions Ky(t), Kyz(t) and

K,(t). A description of the digital program used for

these calculations is contained in Appendix B.
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The disturbance inputs actually used in the simulation
studies of this problem are characterized as follows:

(a) The effect of gravity on the missile is modeled as
a constant "downward" acceleration of the missile.

(b) The effect of drag on the missile is modeled as a
deceleration caused by "base drag", neglecting any ad-
ditional drag terms in induced by a non-zero angle of
attack. The drag disturbance deceleration is simulated by
means of the standard expression (directed opposite to
direction of missile velocity Vp)

wy=3ov?s_ cy/m (4.44)
where p is the air density, Vp is the total velocity of

the missile

Vm=jx§ + xi
Sm 1s the reference area of the missile, m is the mass of
the missile, obtained by a table look-up as a function of
propellant burn-time (Figure 4-3), and Cp is the missile
base=-drag coefficient, which is obtained by a table look=-up
as a function of the missile mach number (Figure 4-4). The
horizontal and vertical components of drag deceleration (Dl
and D2, respectively) are obtained by projecting wp along
the appropriate coordinate axis.

(c¢) The effect of cross winds acting on the missile is

modeled by a disturbance acceleration with the waveform

e Ty
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Figure 4-3. Missile mass versus burn time.
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Missile drag coefficient versus mach number.

o T R e At Wt Y

TR gk 4 6 76 by

SR T O MPs . ki R

bes’]

T

R El

v e e A

|
2‘
|



146

in Figure 4-5, acting in a direction normal to the missile
velocity vector. This waveform is based on realistic aer-
odynamic performance data obtained in response to a wind
force acting on a thrusting missile. Although the point-
mass model used in the problem at hand lacks an explicit
model of angle-of-attack (the angle between the missile
longitudinal axis and its velocity vector is assumed to be
zero), the wind model used in this problem simulates the ef-
fect of a local updraft or downdraft affecting a missile by
causing it to develop a small angle-of-attack, which pro-
duces an aerodynamic force normal to the missile's longi-
tudinal axis, which, in turn, causes an acceleration as
shown in Figure 4-5. This acceleration is applied along a
direction normal to the missile velocity vector. The dura-
tion of the acceleration (modeled as a sine-squared func-
tion with a peak value of 32,2 ft/sec?) is based on the

approximate time for an aerodynamically stable missile

WINDM 4
32.24
FT/SEC2
g T f T Y T >t
0 1.0 1.72.0 2.5 3.0
SEC T

Figure 4-5., Representation of effect of wind disturbance on
missile (WINDM),
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(of the class considered in this problem) to regain its
rotational balance following development of a wind-induced
angle-of-attack., The direction of the acceleration WINDM is
such as to move the missile into the wind for the type of
thrusting missile assumed in this problem. The trans-
lational effect of winds occurring during thrusting, as
distinguished from the rotational effect just described, re-
sults in a very small amount of translational motion, and
can be neglected during the short flight times considered
here, It is assumed in this problem that the wind effect is

local to the missile, and does not affect the target.

(d) Intentional target maneuvers are modeled as a dis-

turbance acceleration of the target resulting from aer-
odynamic forces acting in a direction normal to the tar-
get's velocity vector. It is assumed in this problem that
the target develops sufficient thrust to just cancel its
aerodynamic drag, and that the target's lift force is
maintained at a levei to balance the gravity force on the
target; therefore, the target, in the absence of intentional
maneuvers, would maintain a constant velocity and altitude.
The assumed target acceleration, normal to its velocity
vector, is shown in Figure 4-6. The maximum value of the

latter target maneuver acceleration is 128 ft/secz, and

its direction is represented as an uncertain parameter in

the present study.
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TMAN |

128.

FT/SEC?

H T
0 1.11.6 SEC t

Figure 4-6. Target maneuver acceleration disturbance
(TMAN) .

4,2.3.1. Subcase 4.2.1 - Planar-Motion Intercept.

Disturbance Inputs: (a) Gravity (helpful); (b) Aerodynamic

drag (non—-helpful). This 3ub-case considers the performance

of a migssile under disturbance-utilizing control in a planar
intercept problem with the particular missile—-target geome-
try of Figure 4-7. This geometry represents the case in
which the missile has been delivered, by a previous mid-
course guidance phase, to the position (-9000 ft ground-
range, +5000 ft altitude), with a horizontal velocity vector
having a magnitude of 2000 ft/sec. The parameter values as-

sumed for this Sub~case are:

(1Y 1Initial target ground-range 0. ft
2) 1Initial target altitude 4000, ft
tnitial target velocity* -1000. ft/sec

+ *. .orizontal, to the left in Figure 4-7
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NOTE: lom = 10,000 1bs for force components,
' U, Uy
i N
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T T T T T T T T T
! ~9000 ~8000 -7000 -6000 -5000 ~-4000 -3000 -2000 -1000 [}
: GROUND - RANGE
FT

Figure 4~-7., Missile and target trajectories for Sub-case
4.2.1, showing longitudinal (Up) and normal
(Uy) disturbance-utilizing control
components. Disturbance inputs: (a) gravity;
(b) aerodynamic drag.

T et

NOTE: 1 cm = 10,000 lbs for force components U, Uyg. ;




Initial missile ground-range -9000. ft
Initial missile altitude 5000. ft

Initial missile velocity* 2000. ft/sec
(7) Disturbances present: gravity and aerodynamic
missile drag (no target maneuver, no winds). Gravity is
helpful (aids the intercept) and drag is counterproductive

(acts against the intercept).

(8) Terminal state weighting matrix:

:

(ll) Specified terminal time = 3,0 sec.

*Initially horizontal to the right in Figqure 4-7
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The resulting missile and target trajectories are

presented in Figure 4-7. The optimal disturbance utilizing :

control forces can be represented by the two components Uy, i

and Uy defined as follows:

Ug, = control force along the longitudinal missile
axis, computed as the projection of the optimal ;
;
control forces muj; and muj. i
t
Uy = control force normal to the longitudinal missile é

axis, computed as the projection of the optimal

control forces muj and muj. :

A plot of Up(t) and Uyn(t), shown at half-second

intervals, is depicted in Figure 4-7,

[

The longitudinal (Uy), normal (Uy), and resultant

control forces for Sub-case 4.2.1 are plotted in Figure 4-8.
Note that the primary control requirement is for normal

(pitch-down) force in this case. The control forces in the

Rl T L W R

relative~state coordinate system are plotted in Figure 4-9,
showing that the primary control force requirement is in the

f vertical (downward) direction. The horizontal and vertical i

state histories for Sub-case 4.2.1 are shown in Figures 4-10




and 4-11. The disturbance histories for w) and wy, re-
flecting the contributions of drag and gravity to the hori-
zontal and vertical disturbances, respectively, are shown

in Figqure 4-12. Figure 4-13 shows a plot of the utility

function #, which remains positive for the entire con-

trol interval [0 £ t < T]. Although drag is acting against
achievement of the intercept, gravity is acting as a help-
ful disturbance during the interval [ty,, T], resulting in

a net disturbance effect which is helpful.

The performance Sub-case 4.2.1 is summarized in Table
4-1 where the disturbance-utilizing controller (DUC), using
the contfol law

w®= - r71pT [kx X + szﬂ
is compared with the so-called "conventional linear-

quadratic controller," called the "LQ" controller. The

LQ controller uses the familiar control law

u=- r1g7T [k, %]

which is the same as Equation (4.45) with Ky, = o. Except
for the difference in control laws, Equations (4.45) and
(4.46), the conditions under which the comparison is made
are identical (i.e., identical disturbance inputs, identical

plants, identical geometry, etc.).
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U, Uy URes j
0 30000—

P T e

20 Y e

-5000 25000

-10000 20000
CONTROL FORCE, POUNDS
-15000 15000

TR

Ty

) e Feig

10000 -20000 10000

5000 =-25000 5000-

0 =30000 0

SEC T

Figure 4-8. Longitudinal (Up), Normal (Uy), and
Resultant (Urgg) of control force for
Sub-case 4.2.1; disturbance-utilizing control,
muy mis )

0
~5000—

-10000+
CONTROL FORCE,

POUNDS
~15000-

10000 -20000-

5000 -25000-

0 30000

1 T
0 1.0 2.0 3.0
SEC T
Figure 4-9. Horizontal (muj}) and Vertical (muj) control

forces for Sub-case 4,2.1; disturbance-
utilizing control.
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1 *24
0 5000~
(ft) (ft/sec) X %
-2000 4000~ « \\ :
/" %
-4000 3000- ,
-6000 2000-
-8000 1000
-10000 0 : : —t
0 1.0 sec 2.0 310
T

Figure 4-10. Horizontal state histories: x) (relative
position), x3 (relative velocity), for
Sub-case 4.2.1; disturbance-utilizing control.

X3 X
1000
(f£)(ft/sec)
800 -2001
600 -400-
400 -600-
200 -800"
- - t
0 -10004 10 SEC 2.0 370
T

Figure 4-11 Vertical state histories: x3 (relative
position), x4 (relative velocity), for
Sub-case 4.2.1, disturbance-utilizing control.
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Figure 4-12, Relative accelerations due to disturbances:
w1 (horizontal) and wp (vertical), for
Sub-case 4.2.1.
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Figure 4-13. Disturbance utility for Sub-case 4.2.1.
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The various performance measures presented in Table 4-1
are defined as follows:
Table 4-1. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER

COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB~CASE 4.2.1.

kERFORM- CONTROL | CONTROL MISS

NCE ENERGY |{FUEL DISTANCE

INDEX MD
J EU EAU &y -

] Y H (FT)

89.%

X10°

NOTE: SEE PAGE 157 FOR DEFINITIONS OF

J, &, EU, EAU, &, , &, , MD AND &,...
T My O M, MD




EU = %— gTuT(t)u(t) at

Q

gav = 3 o (lege! + | u,(t) ]) at

t
0

JMh = lxl(T)LQl " lxl(T)DUCI x100%

%3 (T ol - 1%3(M pyel

JM = x100%
v |x3(T)LQI
2 2
MD = /xl(T) + x3('1‘)
(MD)LQ (MD)Duc‘XlOO%
fup © (MD)
LQ

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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The measure EU, computed by Equation (4.49), is proportion-
al to the "control energy" part of the integral term in the
performance index J (Equation 4.47). The measure EAU, com=-
puted by Equation (4.50) is of interest to control actuator
designers, since it gives an indication of how much actuator
fuel, or control thruster fuel, is consumed during a missile
flight.

For Sub-case 4.2.1, the DUC controller achieves a smal-
ler performance index J (evidenced by a positive value of
JT). This is the expected result, since the LQ controller
does not have benefit of information about the disturbance
vector z and does not incorporate the time-varying gain
matrix Ky,. The DUC also achieved a substantially smaller
miss distance MD (evidenced by the large positive value of
fMD)' even though the LQ controller achieved a smaller
vertical miss distance (note the negative value of JMV).
The DUC required less control energy EU, but slightly more
control fuel EAU in this flight. Thus, the impressively
smaller miss distance MD was achieved at the expense of a
small additional expenditure of fuel (relative to the LQ
controller) for this sub-case. Heavier weighting on the
matrix S might result in more efficient fuel consumption
for the DUC in this particular sub-case.

The performance cited for Sub-case 4.2.1 is based on the
specified terminal time T = 3.0 seconds. It is of interest

to examine the effects of using other fixed values of T.

Based on an approach suggested by Prof. C. D. Johnson, a
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digital computer program was developed to determine the
Jaiué.of J for a range of values of T. This program scans
the set of values of J thus obtained, selects the minimum
value Jyin among them, and prints the results of the op-
timal control problem which has the particular terminal time
Tmin Which yilelds Jgin. The program first solves the

matric differential equations for Ky, Ky, and K,

(Equations 4.41, 4.42 and 4.43) in backward time, starting

at the given terminal conditions. For example, if it is de-
sired to scan over a range of values of T from T = 0 to T =
6 seconds, the matric equations will be solved beginning at
6 seconds, using the given terminal conditions, and inte-
grating until t = 0 is reached. During this backward inte-
gration procedure, intermediate values of the gain matrix
elements are stored at selected intervals. For instance, if
an interval of 1 second is used, then values of each element

are stored at t = 5, 4, 3, 2, 1 and 0 seconds. Fiqure 4-14

illustrates this procedure for one element (lel) of the
16 element Kx array for Sub-case 4.2.1. For this element,
the values K (5), K (4), K {3), K (2),

X11 *11 *11 X11
Kxy1(1) and Ky,,(0) are saved during backward inte-
gration of the matric differential equation. Next, the

optimal control problem is solved in forward-time, using

each saved value as an initial condition for a forward-time
integration of the matric differential equations. In the

example being considered, six forward-time optimal control

problems are solved, and J is computed for each problem,
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xy1 4
]
K
xll(3)] _______ |
1
\
(
1 {
K !
xll(G) l
1
T T —_— Yr— r — t
0 1 2 3 4 5 6

Figure 4-14. Typical history of K, -

11
The program selects the minimum (Jpjn) of these six values
(if a minimum exists) and identifies the corresponding
terminal time Tpin. As an example, suppos? the minimum
value of J is found to be associated with Tpjp = 3
seconds; then, the program makes one final "run for the
record”, using T = Tmin = 3 seconds and the initial
conditions Ky(3), Kyz(3) and Kz(3). (The matrices

Ky and Ky, are required for the control law

implementation; matrix K, is used in computing the utility
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function, for analysis purposes). For the gain element

lel' the resulting gain history, generated by this

final forward-time integration appears as shown in Figure
4-15. In addition to providing the detailed data for the

Jmin case, the program also outputs summary parameters

| such as J, terminal-time miss distance MD =v/x i(T) + X g(T)

o e

I.C. SAVED AT
; t=3 IN BACKWARD RUN—= {

END VALUE
SAME AS SPECIFIED —*
TERMINAL VALUE

Figure 4  15. Forward-time history of Kx); for Tmin=-.
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EU and EAU for each value of T in the range scanned. Values
of these parameters for various values of T, for the problem

conditions of Sub-case 4.2.l1, are presented in Figures 4-16

through 4-19 for the disturbance-utilizing controller, and
the conventional LQ controller. The minimum value of J is
reached at T = 3.0 seconds for both controllers (see Figure
4-16). The total effectiveness €p versus T is plotted

over the range of T from 1.5 to 5.0 seconds (Figure 4-20),

remaining positive for the whole interval. This shows that
the disturbance-utilizing controller consistently obtains a

lower performance index than the LQ controller,

J

‘ PERFORMANCE
108 1] INDEX
4 -
N SOLID CURVE=DUC,
N DASHED CURVE=LQ
10 8-
e
2

10% 147

Figure 4-16. Performance index J versus terminal time T,
Sub-case 4.2.1; DUC and LQ.

e s B T

VT Al I Wb

BTl

&

SR M TPRITERD " yoep g R R N

Rk

N e e P, A T P T e WA IR TR P K N

3




2 2
xS (T)+xS(T
\/ 1 (TI+x5(T) MISS DISTANCE

|
RADIAL ‘:4
MISS SOLID CURVE = DUC

DISTANCE DASHED CURVE = LQ

e

Figure 4-17., Radial miss distance at t = T versus terminal
time T, Sub-case 4.2.1; DUC and LQ.
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Figure 4-18. Control energy measure EU versus terminal time
T, Sub-case 4.2,1; DUC and LQ.
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Figure 4-19. Control fuel measure EAU versus terminal time
T, Sub-case 4.2.1; DUC and [Q.
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Figure 4-20. Total effectiveness #7 versus specified
terminal time T for Sub-case 4.2.1.
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.3.2 Sub-case 4.2.2 Planar - Motion Intercept

a) Gravity (helpful)
b) Aerodynamic drag (non-helpful)
c) Winds (non-helpful in vertical direction;

helpful 1n horizontal direction) on the
missile

d) Target maneuver (non-~helpful)

I &y 7 T T G A NI - P

This case considers the effects of winds and target man-
euvers on the performance of a missile with disturbance-
utilizing control. All conditions and parameters in this

case are ldentical with those of 3Sub-case 4.2.1, except that

two additional disturbance inputs are present in sub-case

4.2.2: namely, winds and target maneuvers. The wind input

disturbance is defined by Figure 4-5, and acts on the mis-
sile as a normal force (m)(WINDM), where m is the missile
mass and WINDM is the normal acceleration of the missile due
to wind. It is assumed in Sub-case 4.2.2 that the wind
force (m)(WINDM), or its horizontal and vertical components
(m) (WINDl) and (m)(WIND2), are acting on the missile as
showr in Figure 4-21. Thus, for the geometry of Sub-case
4.2,2, *he horizontal component of wind force is helpful in
driving the missile toward the intercept, but the vertical
component of wind force is non-helpful, since it acts to
hinder the intercept.

The target maneuver in Sub-case 4.2.2 has the waveform

described in Figure 4-6, with a peak acceleration value of

128, ft/sec? (4g), and acting in a direction to drive the
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Figure 4-21, Normal wind force (m)(WINDM) and its
horizontal and vertical components (m)(WIND1),
(m) (WIND2), respectively, for Sub-case 4.2.2.
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target downward---i.e., away from intercept. Thus a

non-helpful target maneuver is assumed.

The closed-loop disturbances-utilizing control was

derived as in previous cases, and the resulting missile and

EN

target trajectories are shown in Figuse 4-22. The

longitudinal and normal components of the disturbance-

0 S A B SN N 3R T

utilizing control force are also shown in Figure 4-22 at

selected moments of time. Note the downward deflection of
the target trajectory due to the assumed target acceleration
maneuver. Although the target applies a significant
magnitude of maneuver acceleration (4q), it is applied about
half-way into the flight and the target trajectory does not

have time to deviate very far before intercept occurs. The
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effect of the target maneuver "disturbance" on the compo-

nents Up, and Uy of the disturbance~-utilizing control

force can be seen at t = 1.5 in Figure 4-22, where, for
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Figure 4-22,

Missile and target trajectories for Sub-case
4.2.2 showing longitudinal (Up) and normal
(Uy) disturbance-utilizing control force
components, Disturbance inputs:

a) gravity

b) aerodynamic drag

c) winds on missile

d) target maneuver

Note: 1lcm = 10,000 lbs for force components
UL' UN.
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instance, both control components become larger for a short
time to accommodate the detrimental effects of the target
maneuver "disturbance".

The time-~histories of the disturbance-utilizing control

forces for Sub~case 4.2.2 (Figures 4-23 and 4-24) clearly

show how the additional disturbance effects due to target
maneuvers and winds are taken into account by the
disturbance-utilizing controller. Note, for example, the
abrupt changes in the control forces over the sub-interval
[t = 1.1 to 1.6 sec) due to the onset of target maneuvers.
The effect of the wind on the control forces can likewise be
seen during the sub-interval [t = 1.7 to 2.5 sec].

The time~histories of the relative state variables

(Figures 4-25 and 4-26) are almost identical with the cor-

responding time-~histories for sub-case 4.2.1 (Figures 4-10

and 4-11), which indicates that the disturbance-utilizing
controller is doing an effective job of "accommodating” the
additional disturbance inputs due to target maneuvers and
winds.

The relative accelerations between missile and target,
due to disturbances, are shown in terms of horizontal (w))

and vertical (wj) components in Figure 4-27. Those graphs

show the rather dramatic changes in relative accelerations
due to the presence of additional disturbance inputs for
this sub-case.

The effects on performance caused by the additional dis-

turbances can also be seen in the time~history of utility
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Figure 4-23. Longitudinal (Up), Normal (Uy), and
Resultant (Urgg) of control force for
Sub-case 4.2.2; disturbance-utilizing

control,

169

oy -

i T 4T P T

e

Ao e e

T g g T g T T S e T




mul muzg
CONTROL FORC

POUNDS

30,000+

20,0004

10,000 mu,

-10,000

"20 ,000

-30,000

Figure 4-24. Horizontal (mu)) and Vertical (muy)
control forces for Sub-case 4.2.2;
disturbance~-utilizing control.
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Horizontal state histories: x) (relative
position), x7 (relative velocity), for
Sub-case 4.2.2; disturbance=-utilizing control.

Vertical state histories: x3 (relative
position), x4 (relative velocity), Ffor
Sub-case 4.2.2; disturbance-utilizing control,
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Relative accelerations due to disturbances:
w] (horizontal) and wp (vertical), for
Sub-case 4.2.2.
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(Figure 4-28) which is suddenly driven to a large negative

value by the target maneuver input, beginning at 1.1 sec-
onds. Thus, this sub-case is seen to have a considerably
less favorable utility history than was true for sub-case
4.2.1.

The performance summary for Sub-case 4.2.2 is presented
in Table 4-2. The disturbance-utilizing controller for this
case obtains a larger J than for Sub-case 4.2.1, reflecting
primarily the increased control energy (as measured by EU)
required to accommodate the intensified disturbance environ-
ment. It is interesting to note from Table 4-2 that,
although the disturbance-utilizing controller achieves both
a lower J and a lower terminal miss-distance than the con-
ventional LQ controller, it did not in this case use less
control energy as measured by EU. fhis is not a surprising
occurrence, since the structure of the performance index J,
Equation (4.39), leads to an optimal solution which seeks a
weighted balance between the values of the terminal state
term and the value of the integral portion of J. In Sub-
case 4.2.2, the terminal miss-distance performance of the
DUC was achieved at the expense of consuming a small amount
of additional control energy. However, the DUC consumes
less fuel than the LQ controller, for this sub-case as shown
by the values of EAU in Table 4-2. Note that the
disturbance-utilizing controller has positive total effec-

tiveness , & = 11.2%, for the selected terminal time of

T = 3.0 sec. The variation of & versus various specified
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Disturbance utility for Sub-case 4.2.2.
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Table 4-2. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER

COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FQOR SUB-CASE 4.2.2. ]
4
PERFORMA . . . ]
ANCE CONTROL | CONTROL | HOR1Z, VERT, MISS 3
INDEX ENERGY FUEL. MISS M1SS DISTANCE
v X, (T) |* . 4
J T EU EAU 1 Ml X3 | My MD “ MD
) (FT) (FT) | 1 (FT) P
.7 .7
! puc| © izl ©727 | a910 | -3.9 B2.2 10.5 |79.0f 11.2 |79.5
L X10 x10’ .
LQ °-8§7 o.bza 387.0 | -21.9 50.0 54.6 f
X10 X10° ;
L i
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terminal times is shown in Fiqure 4-29. Note that & re-

mains positive up to about 4.7 seconds. The effectiveness
would be expected to be always non-negative (that is, the
disturbance-utilizing controller would be expected to be at
least as good as the conventional linear-quadratic control-
ler in handling an identical disturbance input, but, the

numerical results of Figure 4-29 indicate that this con-

dition was not achieved beyond t = 4.7 seconds for the cal-
culations performed on Sub-case 4.2.2. The reason(s) for
this discrepancy is not known, but the following two pos-

sible sources of error are proposed as contributing factors:

(1) Disturbance waveforms consisting of linear
ramps and constant level segments (as assumed in the dis-
turbance model, Equation (4.28) - (4.32)) only afford an

approximation to the wind and drag disturbances actually

used as inputs in the computer simulation runs of this pro-
blem. The non-ideal results in the values of &p above t =
4.7 may reflect the error involved in this approximation
since &7 is a function of the difference between two large
but nearly equal, values of J in this region. A solution to
this problem, of course, is to model the disturbance more
realistically, possibly increasing the order of the distur-
bance model, Equations (4.28) - (4.32). On the other hand,
the level of the existing approximation error may well be

adequate for most practical intercept applications.

prpr———
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Figure 4-29. Total effectiveness &7 versus specified
terminal time T for Sub-case 4.2.2.

e D T R g

!




178

(2) The method of obtaining "initial conditions"
for the forward-time computation of the gain matrices Ky
and Ky,, as used in this study, may introduce computa-
tional errors in cases with large values of T. That is,
since some elements of the matrices are very "flat" as
backward-time approaches t = o, the backward-time integra-
tion process may produce neighboring solutions having nearly

identical values near t = 0. Figure 4-30 illustrates this

phenomenon for a typical element of the matrix Ky, where
several gain-histories have nearly the same initial con-
ditions at t = o. In fact, due to the resolution limitation
imposed by the digital word size, there always exists some
“large" value of T such that two neighboring Ky(t) gain-
histories will have values so close together (near t = 0)
that their numerical values are represented by the same
digital word. When this happens, it becomes impossible to
generate unique forward-time gain-histories for two neigh-
boring backward-time solutions. One way to circumvent this
problem is to provide double-precision computations £or this

portion of the program.

4.2.3.3 Sub-case 4.2.3 - Planar - Motion Intercept.

All Conditions as in Sub-case 4.2.2, Except for Increased

Terminal State Weighting. It is interesting to consider the

effects of the terminal state weighting matrix S on the per-
formance of a missile with disturbance-utilizing control.

The sub-case considered in this section uses the S-matrix
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Figure 4-30. Illustration of problem of ambiguity due to
"flatness” near t = o,

100 0 0 0

s=|0 0 0 0 (4.55)
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That is, the weighting of the relative position states x]
and x3 is increased by a factor of 10 over that used in
Sub-case 4.2.2; all other parameters are identical with
those of Sub-case 4.2.2,

The missile performance summary for sub-case 4.2.3. is
presented in Table 4-3, and shows that the increased weight-
ing on terminal miss-distance provides a sharp reduction in
both x3(T) and x3(T), as well as total miss-distance,
for both the disturbance-utilizing controller and the con-
ventional linear-quadratic controller (compare with Table
4-2). These reductions were obtained at the expense of
slightly larger total values of J. Note that, for Sub-case
4,2.3, the disturbance-utilizing controller achieves much
lower terminal miss-distance and also uses less control
energy and less control fuel than the conventional LQ
controller. The disturbance-utilizing controller for this
case achieves significant total effectiveness value JT =

20.28. Figure 4-31 shows the total effectiveness &n

versus terminal time T for Sub-case 4.2.3, which indicates
that the disturbance-utilizing controller consistently

obtains a lower value of J for various values of T.

*This means that Jpyc is 79.8% of JLo-
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TABLE 4-3. PERFORMANCE OF DISTURBANCE-UTILIZING
CONTROLLER COMPARED WITH CONVENTIONAL LINEAR-
QUADRATIC CONTROLLER FOR SUB-CASE 4.2.3.

PERFORMA CONTROIL | CONTROL.| HORIZ. VERT. MISS
IANCE ENERGY FUET. M1SS MISS DISTANCE
INDEX
_ - x, (1) |e& X, (T) |
a T FU EAU 1 M| 2 MD - #
¥ (Fm) | | {FT) :v (FT) e
0.743 | 0.742
puc 20,2 B 3 376. -0. . . p
1o 105 6.0 0.6 [90.2] 0.9 [e2.4f 1.1 |91.7
o] 2:920 0.842
o] 7% 43, -6. .
XIOS x105 4 0 6.1 11.8 13.3

NOTE: SUE PAGE 157 FOR DEFINITIONS OF

J, &40 EU, EAU, wM“, va, MD and &£,..
e -
AT TOTAL JLQ JDUC
EFFECTIVENESS = B, x 100%

204 LQ
154
107

51

T Y > T
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SEC

Figure 4-31, Total effectiveness #p versus specified
terminal time T for Sub-case 4.2.3.
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4.2.3.4 Sub-case d4.2.4 - Planar - Motion Inter-

cept; Ground-Launched Missile. Disturbance Inputs:

a) Gravity (non-helpful)

b) Aerodynamic drag (non-helpful)

¢) Winds (non-helpful in horizontal direction,
helpful 1n vertical direction.)

d) Target maneuver {(non-helpful)

In this section we consider the performance of a missile
with disturbance-utilizing control in a ground-launch
problem with difficult missile-target geometry and highly
detrimental disturbance inputs. The geometry of the case to

be considered is shown in Figure 4-32. The parameter values

peculiar to Sub-case 4.2.4 are:
a) Initial target ground-range
b)) Initial target altitude
Initial target velocity

(horizontal, to the left
in Figure 4-32)

Initial missile ground-range ~7000.

Initial missile altitude 0.

Initial missile velocity 0.

Disturbances present: gravity
{non-helpful), aerodynamic drag
(non-helpful), wind force on missile
(large non-helpful component in hori-
zontal direction; small helpful compo-
nent in vertical Jdirection), target
maneuver (4 a's, evasive - non-helpful).

Terminal state weighting matrix S is as

tollows:

S AN o Wt g N R 2 DT e e e e | e s

Ty




ALTITUDE FT

)
L 8000
t=6.0 TARGET INITIAL
,/ TRAJECTORY "qagggr | 7000
POSITION
L 6000
t=S,
MISSILE
TRAJECTORY L 5000
t=4.0 L 4000
L 3000
L 2000
t=2.0
INITIAL - 1000
MISSILE
POSITION t=0
-6000  -4000  -2000 ' 0 GROUND RANGE
-7000 -5000 -3000 -1000 FT

Figure 4-32,

- »

Missile and target trajectories for
Sub-case 4.2.4; disturbance-utilizing
control. Disturbance inputs:

a) Gravity

b) Aerodynamic drag

¢) Wind on missile

d) Target maneuver
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100 0 0 0
0 0 0 0 (4.56)
S = 0 100 0
0 0 0
i) Q = (0] (4.57)
j) R=[1 0 (4.58)
0 1

k) Specified terminal time T = 6.0 sec.

The wind disturbance force for Sub-case 4.2.4 is ori-

ented as shown in Figure 4-33. The missile trajectory for

this case is nearly vertical (about 80 degrees), and, there-
fore, the horizontal (non-helpful) wind force component

(m) (WINDL) is much larger than the vertical (helpful) com-
ponent (m)(WIND2). The waveform of the wind-induced ac-
celeration normal to the missile (WINDM) is defined by

Figure 4.5. The target acceleration for Sub-case 4.1.4 is de-
scribed by Figure 4-6, and is a 128, ft/sec? (4g) evasive
maneuver which drives the target upward - away from
intercept .

The optimal disturbance-utilizing control for this sub-
case was computed as in the previous intercepts, and the re-
sulting missile and target trajectories are shown in Figure
4-32.

The time-histories of the control force components for

sub-case 4.2.4 (Figqures 4-34 and 4-35) reflect the effects

of winds (between t = 1.7 and t = 2.,5) and target maneuvers

(beginning at t = 1.1).
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VERTICAL
|

(m) (WINDM)

(m) (WIND1)

* HORIZONTAL

Figure 4-33. Normal wind force (m)(WINDM) and horizontal

and vertical components (m)WINDl, (m)(WIND2),
respectively, for Sub-case 4.2.4.
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Figure 4-34. Longitudinal (Up), Normal (Uy), and
Resultant (Uggg) control forces for
Sub-case 4.2.4; disturbance-utilizing control.
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mul mu2 A
100000 100000 A ™~
80000 80000 T __—mu,
60000 60000 ‘h\\\\N
40000 40000 1 K\
mul
20000 20000 ~
t
0 ° Y 1l0 2TQ/_3TO 4.0 5.0 6.0
SEC T

-20000 .

i Figure 4-35. Horizontal (mu;) and vertical (mu3)
control forces for Sub-case 4.2.4%;
disturbance-utilizing control.

The time~histories of the missile target states for

Sub-case 4.2.4 are shown in Figures 4-36 and 4-37. The ef~-

fects of the wind disturbance are seen in the horizontal
position and velocity states in the interval {t = 1.7,
t = 2,5]. The effect of the target's evasive maneuver, and

the cumulative effect of drag on the missile, result in a

slight decrease in relative vertical velocity X, hear the

final time (see Figure 4-37).
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4,2.4; disturbance~utilizing control.
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Figure 4-37. Vertical state histories: x3 (relative

position), x4 (relative velocity), for
Sub-case 4.2.4; disturbance-utilizing control.
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The net disturbance effects are seen in the plots of

w) and wp in Figure 4-38, which reflect the combined ef-

fects of gravity, drag, winds, and target maneuvers.

The effect of w); and wp on utility is seen in Figure
4-39. Note that ¥ is negative for thc total flight, showing
the effect of the highly detrimental disturbance environment
of Sub-case 4.2.4.

The performance of the missile with disturbance-
utilizing controller for Sub-case 4.2.4 is summarized in
Table 4-4. Note that the disturbance-utilizing controller
achieves positive total effectiveness 6T even though the

utility # is always negative for this case. This result de-

monstrates applications of disturbance~utilizing control are

not limited to those cases in which the disturbances have

positive utility 4. The disturbance-utilizing controller
for this case produces significantly better performance than
the LQ controller, in terms of terminal miss-distance,
control energy requirements, and control fuel consumption,
even though the available "utility of disturbances" ¥ is

never positive.

4.3 A Planar - Motion Homing Intercept Pcroblem with
Fixed Target and Disturbance-Utilizing Control

4.3.1 Mathematical model. 1In this section we

consider a homing intercept problem in which a missile is

to be controlled during the final phase of its flight so

that its position coincides with that of a fixed target at
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Figure 4-38. Relative accelerations due to disturbances:
w] (horizontal) and wy (vertical), for
Sub-case 4.2.4.
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Figure 4-39. Disturbance utility for Sub-case 4.2.4.
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TABLE 4-4. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRAYIC
CONTRULLER FOR SUB-CASE 4.2.4.

PEREPORM CONTROT P CONTROL ) HOREL, VIERT. M1SS

AN ENDRGY FUrl. MIns MISS DISTANCE
INDEN
. < BE ' . BN ¢ ‘
J o e AU S fem | oxp (T M ‘M
R 2 H (T . M) .
0,513 .51 7
npre t 2hd t 109, .0 0N a4 .3 -0.7 96.9 0.83 96 . 6
X1{v X10
Q, L84 [A RN
LQ o o 1433.0 -8, 0 -22.8 24.1
N10 X10
NPt SELOPAGE 1S T FOR DEUINTTTONS OF
A [N 1 v ' ‘ MD nd o
1 , i, AL, ‘ ‘ h an MDY
N“ M\.

a specified terminal time, even in the face of disturb-
ances which may, or may not, be detrimental to the control

objective. The planar geometry for this problem is shown in

Figure 4-40, wherc the origin is located at the fixed ground

target position and the position of the missile is defined
by the coordinates (Xy, YM), where Xy is horizontal
and Y, is vertical, relative to the ground.

It is convenient to consider a reference line-of-sight
(REF LOS) passing through the target and oriented at a known
angle ap relative to the horizontal line X,. The REF
LOS is established a_priori, and may correspond to a desired
orientation of the line-of-sight. A coordinate x] is es-

tablished normal to the REF LOS (Figure 4-40) and it is as-

sumed that the missile begins the homing phase of the

problem with a certain displacement xj(o) and velocity

o T T
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mwi(t)

MISSILE

é’/
=
4
[}

Fiqure 4-10., Coordinate system for small line-of-sight ¥
angle homing intercept model,.

x2{0) (where xp = ;1) normal to the REF LOS. It is

assumed that a previous "midcourse" guidance phase has de-
il1vered the missile to the beginning of the homing phase at
t = ty; thus, non-zero values of x;(o) and x3(o) char-

acterize the extent to which the midcourse phase has failed

PR ATIN L g 5o

to enable the missile to start the homing phase under ideal

PR

conditions. The initial range to the target and the closing
velocity are assumed given, The following assumptions are

made in connection with this problem:

= R o ISP

(a) The displacement xj; (t) of the missile at any

time te(ty, T] during the homing problem is small (and

AN P 2ar

hence the line~of-sight angle )\ (Figure 4-40) is small), so

s SR, . el At S

that the forces normal to the LOS may be considered to be

approximately normal to the REF LOS.
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(b) The missile is controlled by a force mu (m is
the mass of the missile and u is the acceleration associated
with the control force) which may be considered to be normal
to the REF LOS. This type of control may, for example, be
associated with

(1) A missile with "side~-thrusters," oriented
so that the missile's longitudinal axis 1is approximately
along the REF LOS: or

(2) Ar aerodynamically controlled missile
(e.g., a missile controlled by the deflection of tail fins)
whose longitudinal axis lies approximately along the REF
LOS.

(c) The component of closing velocity (between
missile and target) along the REF LOS can be considered to
be constant during the homing problem.

(d) The disturbance forces of primary interest are
those which are normal to the REF LOS, represented by mw(t)

in Figure 4-40, where w(t) is the acceleration normal to the

REF LOS resulting from disturbance forces.

Since the initial relative range and the closing veloc-
ity (constant) is given in this problem, the time t, at
which the relative range along the REF LOS will become zero
is known a priori. This value t; is used as the speci-
fied terminal time T at which x) is to be driven to zero
along the coordinate normal to the REF LOS. 1In missile

applications, T is typically obtained from radar or

range-finder data in the form of time-to-go (tgo =T - t).

NS SR E S R S a2
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Any error in the measurement (or estimate) of tgo will
result in a non-zero miss distance along the REF LOS.
Errors in the knowledge of T are not considered in the pres-
ent work, but have been investigated by several authors
{21}, (22] in relation to homing intercept problems, and
current research is underway at the U, S. Army Missile
Command to find improved methods for estimating tyo-
Assumptions (a) through (¢) and the associated geometry

of Figure 4-40 define a "small LOS angle"” missile homing

model like that which has been used by a number of workers
[23] - [34] in applications including intercept and rendez-
vous (where displacement and velocity normal to the REF LOS
are driven to small values as t + T). However, the "small
LOS angle" model is used in the present work in a unique way
~ disturbances normal to the REF LOS (note assumption (d4))
are utilized in an optimal manner. Former approaches either
ignored these disturbances, or modeled them as gaussian
noise and used stochastic control approaches to cope with
them. The application of the "small LOS angle" model to the
missile homing problem where disturbances are present
results in a particularly straight-forward imple-

mentation of the linear-quadratic disturbance-utilizing
control theory.

The equations describing the motion of the missile

normal to the REF LOS are

s asc s
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Xy = U + w(t) (4.60)

y = [xy.%,]" (4.61)
where the output vector Y has x} and x2 as its elements
- it is assumed that high-quality measurements of x) and
X2 are available from tracking data. These equations may

be written in the form

X = AX + Bu+ Fw (4.62)
Y = C x (4.63)
where
a= [0 1 (4.64)
0
B = 0 (4.65)
1
0
F = ( > (4.66)
1
and
c= |t © (4.67)
0 1

It is assumed that the disturbance w(t) is a slowly-
varying function of time which may be closely approximated

by linear combinations of constant levels and linear ramps:

w(t) = C] + Cat (4.68)
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where C) and C; are unknown constants. The disturbance

process is written in state-variable form as

2 =W (4.69)
2y = 2, +0(t) (4.70)
2, = 0 + 0y(t) (4.71)
or in the form
z2=0Dz+ alt) (4.72)
w=H 2z (4.73)

where

D = [° l] (4.74)
0 O

H=[1 0 (4.75)

and o(t) = (0] , 02] is a sparse vector-impulse sequence
occurring at unknown instants.

The sources of disturbances considered in this problem
are gravity and winds (when present). The gravity component

acting normal to the REF LOS is

R0 T IS T <A A A
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- 32.2 cos ayp
and a nominal value of ap = 30 degrees is assumed. Thus
the acceleration disturbance normal to the REF LOS due to

gravity is as shown in Figure 4-41l.

ACCELERATION
NORMAL TO
REFERENCE
LOS DUE TO
GRAVITY

)

o
R s X

{

t

-27.89
FT/SEC?

Figure 4-41. Gravity disturbance for homing intercept
problem.

The acceleration disturbance due to wind in this problem
is modeled by the acceleration waveform of Figure 4-5. The
specific orientation of the assumed wind disturbance rela-

tive to the REF LOS will be discussed for the specific cases

where wind disturbances are present.
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4.3.2 Control Obijective. The primary control objective

for the class of problems considered in this section is to
drive the displacement of the missile (normal to the REF
LOS) to zero at a specified terminal time T; that is, to re-
gulate the state x) to zero at t = T. The secondary ob-
jective is to achieve the primary objective while effect-
ively utilizing the "free" energy of the disturbance w(t).
A special case is also considered (Section 4.3.3.2) where an
additional objective is to achieve a specified missile tra-
jectory approach angle at t = T, while achieving the primary
and secondary objectives.

The control objectives are to be achieved by minimizing

the gquadratic performance index

T
J = %- eT(T)Se(T)+ %- / [eT(t)Qe(tH- ruz(t)] dt (4.76)

o

where e = Xgp = X = - X, subject to the plant equa-
tions (4-62) and (4-63) and the disturbance process equa-

tions (4-72) and (4-73). The terminal state weighting

matrix S and the matrix Q will be numerically specified when

P
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they are used in the specific cases. The control weighting
coefficient r is set to 1 for all cases to be discussed
here.

4.3.3 Discussion of Results. The homing intercept

problem is solved by applying the theory of Section 2.4,
which leads to the composite state vector Equation (4.37),
the composite system Squation (4.38) and the performance
index Equation (4.39). The optimal control is computed by
Equation (4.40) after computing the time-varying gains
Kx(t) and Kgz(t) as the solutions of Equations (4.41)

and (4.42.). The time-varying gain K,(t) is also computed
(by solving Eguation (4.43)) for use in computing the dis-
turbance utility+# for analysis purposes. The problem is
solved on a CDC-6600 computer as described for the missile
intercept problem in Section 4.2.3, using backward-time
integration to find the initial conditions for Ky, Ky,

and K.

The plant state x for the optimal control Equation
(4.40) is assumed to be available from position and velocity
data (as from high-quality radar tracking measurements, for
example). The disturbance state vector z is assumed to be
obtained from an ideal state reconstructor (estimator) for
this problem; the grounds for making this assumption were
discussed in Section 4.2.3 in connection with the problem of
Section 4.2, and they also apply to the homing intercept

problem of the present section.
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4.3.,3.1 sSub=-case 4.3.1 - Planar Homing Intercept.

Disturbance Input: Gravity (helpful). In this sub-case we

consider the performance of a missile with disturbance-

utilizing control in a planar homing intercept having the

missile-target geometry as shown in Figure 4-42. The para-

meter values for Case 4d.3.1 are:

a) Fixed target at 0., ft down~-range, 0. ft

altitude.
b) Initial missile ground-range -6778. ft
¢) Initial missile altitude 4260, ft

d) Initial missile coffset normal
to REF LOS, x)(0) 300. ft

e) Initial misstile range along
REF LOS -8000. £t

£) Initial missile velocity normal x

LSS

to REF LOS, X3(o) 0. ft/sec :
g) Missile velocity along REF LOS ‘
(constant, toward target) -2000. ft/sec :
h) Angle of REF LOS from horizontal 30. deg é
i) Specified terminal time T 4.0 sec i
j) Disturbance: gravity, helpful g

k) Control weighting parameter 1.0

noose i g
SN
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This homing-intercept problem was solved on the CDC 6600
computer, and the resulting optimally controlled missile

trajectory for Sub-case 4.3.1 is shown in Figure 4-42, with

the associated disturbance-utilizing control force mu®

displayed at 1 second intervals. The optimal control u®
is computed by Equation (4.40) as a function of the time- E
varying gain matrices Ky and Kyx;. The time-varying mis- :

sile mass m varies as shown in Figure 4-3. The missile is

able to apply the control force in a direction approximately

normal to the missile trajectory (assuming small angle of

attack) rather than normal to the REF LOS as desired. The

missile trajectory angle relative to the horizontal goes

from 30 degrees at t = 0 to 34 degrees at t = 4.0. There-

fore, the maximum error in the angle of application of the

control force is 4 degrees, which results in the application

of 99.8% of the control force mu® normal to the REF LOS.

The time-history of the control force requirement is shown

in Figure 4-43, which is seen to be nearly a linear function

of time.

The time~histories of the states x) and x2 are shown

in Figure 4-44. Note that, since no penalty has been placed

on x2(T), it has a relatively large value of -140 ft/sec,

corresponding to the missile trajectory angle which is about

4 degrees greater than the 30 degree angle of the REF LOS.

The disturbance for this case (Figure 4-45) is the projec~

tion of gravity normal to the REF LOS. The utility (Figure
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4-46) is non-negative for the whole flight, as the result of
the helptul action of the disturbance in this sub-case.

The performance of the missile with disturbance-
utilizing control for this case is compared with that of the

conventional linear-quadratic controller in Table 4-5, show-

et alanti Al e cubee L anest ot i o

ing superior performance for the disturbance-utilizing con-

troller in terms of J, &7, EU, EAU, x)(T) and &yp,

? where
T
g =%el(msem+ 3 f [eT(t)Qe(t)+r u2(t)] at  (4.77)
tO
1
f
° sec
mu T
‘ 1 2 3 4
m O i ' 1 3 t
a
=
3
O -400 -
s3]
Q
& -800-
fay
W]
2-12004
£
=
Q
U-leooi

Figure 4-43. Disturbance-utilizing control force for
Sub~-case 4.3.1,
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Figure 4-44. State histories: x| and x) for sub-case
4.3.1 with disturbance-utilizing control.
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Figure 4-45, Disturbance acceleration w, for Sub-case
4.3.1.
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Disturbance utility for Sub-case 4.3.1.
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TABLE 4-5. PERFORMANCE OF DISTURBANCE~UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-~CASE 4.3.1.

MISS~
- DISTANCE
PERFORM CONTROL | CONTROL
ANCE NORMAL ¢
INDEX «"T ENERGY FUEL TO REF LOS “MD
J z EU EAU xl (T) z
(FT)
DuC 138.0 1]94.9{ 137.0 29.0 0.4 96.6
LQ 2722.0 2047.0 113.0 -11.6
NOTE: SEE PAGES 202 AND 205 FOR DEFINITIONS

OF J, S EU, EAU AND &

MD"®

| g
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J J
ep = 0 DUC x100%
Ia

T 2
EU = 5 j‘ u“(t) at
tO
EAU = % | u(t) | 4t

Sy
(o) 3

xy (T) |<LQ;'J x1 (T | pyc

[ *1(m ]
LQ

x100%
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(4.78)

(4.79)

(4.80)

(4.81)
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All effectiveness measures show a sizeable margin at T =
4.0. Values of total effectiveness &7 versus terminal

time values are plotted in Figqure 4-47, which indicates a

continuing increase in &7 as T increases,

4.3.3.2 Sub-case 4.3.2 - Planar Homing Intercept.

Disturbance Input: Gravity (non-helpful). Sub-case 4.3.2,

considered in this section, examines the performance of a
missile with disturbance-utilizing control in a planar
homing intercept configuration where the missile-target

geometry (Figure 4-48) is such that gravity is a non-helpful

disturbance, and the missile's offset from the REF LOS at t
= 0, X1(0), 1is twice what it was in Case 4.3.1l. The

parameters for Case 4.3.2 are as follows:

TOTAL J - J

L EFFECTIVENESS = —EQ-F—IN—C x 100%
7 100 /—\ La

soj
60 -
40 4
20-1
0 1 T 1 1 1 ~'I.

0 1 2 3 4 5 6

SEC

Figure 4-47., Total effectiveness #¢ versus specified
terminal time T for Sub-case 4.3.1.

iy
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Figure 4 - 48.

utilizing control.
gravity.

Missile trajectory for Sub-case 4.3.2,
showing control force mu”; disturbance-

Disturbance present:
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Yy  ALTITUDE
FT
#4000

L;ooo

2000

-8000 -7000 -60b0 -5000
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GROUND RANGE

NOTE: mu” scale is 2 cm = 10000%.

FT

-3doo -2000

t
-10b0
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Figure 4-48.

a)

b)
c)

d!

e)

£)

g)

h)

Missile trajectory for Sub-case 4.3.2, showing
control force mu®; disturbance-utilizing

control. Disturbance present:

gravity.

Fixed target at 0. ft down-range, 0. ft
altitude.

Initial missile ground-range -7228, ft
Initial missile altitude 3480, ft
Initial missile offset normal to

REF LOS, xj(o) -600. ft
Initial missile range along

REF LOS -8000., ft
Initial missile velocity normal

to REF LOS, x2(0) 0. ft/sec
Missile velocity along REF LOS

(constant, toward target) -2000. ft/sec
Angle of REF LOS from horizontal 30. deg
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1

i) Specified terminal time T 4.0 sec i

4

j) Disturbance: gravity, nonhelpful %
]
‘ k) Control weighting parameter r 1.0

10 0
1) S =

o
o
1 ARG 5 TN AT -

-, g BB Kr

-y

m) Q= i

The computer results were obtained for Sub-case 4.3.2,

and the final optimally controlled missile trajectory is §
shown in Figure 4-48, with the associated disturbance- i
. utilizing control force mu® displayed at 1 sec intervals. %
: This case has a 600 ft initial offset from the REF LOS :
(twice that of Sub-case 4.3.1) and the geometry of this é
problem makes the gravity disturbance non-helpful, in ;

contrast with Sub-case 4.3.1. As a result, the control j

force magnitudes for this sub-case are considerably larger
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Figure 4-49. Control force for Sub-case 4.3.2; disturbance-
utilizing control.

than for Sub-case 4.3.1 (see Figure 4-49). The missile

trajectory angle for Case 4.2.2 goes from 30 degrees at

t = 0 to about 24 degrees at t -+ T; the maximum error in
the angle »f application of the control force is -6 degrees,
which results in the application of 99.5% of the control
force mu® normal to the REF LOS. As in Sub-case 4.3.1,

the control force for this case (Figure 4.49) is almost a

linear function of time.
The time-histories of the states x) and x are

plotted in Figure 4-50. As in Sub-case 4.3.1, no terminal

gk, e
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Xl xz‘
0 300
FT/SEC X, }
-100 2504 ;
i
-200 ~
-300
i -400
i -500
| -600 0 — . —
0 1 2 3 1
SEC T

Figure 4-50. State histories: xj and x) for Sub-case
4,3.2; disturbance-utilizing control.

penalty is placed on Xy and a relatively large value
of xz(T) results. The disturbance in this case (Figure

4-51), which is the projection of the gravity acceleration

normal to the REF LOS, is non-helpful, since it acts to
hinder the missile from the intercept objective. As a

result, the disturbance utility (Figure 4-52) is either

negative or zero for the whole flight.

The disturbance-utilizing controller for Sub-case 4.3.2

performs better than the conventional linear-quadratic
controller (see Table 4-6) even in the face of the totally
detrimental disturbance, which indicates that, even though
positive utility is never available, the disturbance-
utilizing control law still does better in managing the

states of the plant relative to the disturbance states.
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Figure 4-51. Disturbance acceleration w for Sub-case 4.3.2.
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Figure 4-52, Disturbance utility for Sub-case 4.3.2.
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TABLE 4-6. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.3.2.

?VIISS-
T
PERFORM- g(x)s A§CE
ANCE CONTROL CONTROLTONREmF LOS
INDEX ENERGY |FUEL X (1) | &
J EU EAU 1 MD
(FT) 3
0.158 " 0.157
DUC| 41,5 2] 105 306.0 -3.8 75.8
o 0.183 0.171 1550 L5
x10° X10° : .

NOTE: SEE PAGES 202 AND 205 FOR DEFINITIONS
OF J, Exps EU, EAU AND aMD'

The effectiveness (Figure 4-53) for Sub~case 4.3.2 shows

that the disturbance-accommodating controller continues to

achieve a lower J as the specified terminal time is

increased,

4,3.3.3 Sub-case 4.3.3 - Planar Homing Intercept

e ORI Bt S

with Trajectory Angle Specification at Terminal Time. Dis-

turbance Inputs:

a) Gravity (helpful)

b) Wind (non-helpful)

In this sub-case we consider the performance of a

missile with disturbance-utilizing control in a planar

homing problem which has the primary objective of \
intercepting the target and secondary objectives of s
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TOTAL J. . -3

Ep EFFECTIVENESS = —LQ-E——P-U—C- x 100%
s0] LQ
304
204
104
o T A T T T

0 1 2 3 4 5 5
SEC

Figure 4-53. Total effectiveness®p versus specified
terminal time T for Sub-case 4.3.2.

(1) Achieving a specified orientation of the
velocity vector angle (the trajectory angle) at terminal
time, and

(2) Effectively utilizing "free" disturbance
energy.

Realization of the angle specification leads to a con-
sideration of a terminal weighting matrix S with non-zero
weighting on x2(T). The missile-target geometry for this

sub-case is shown in Fiqure 4-54. The parameter values for

Sub~case 4.3.3 are:

a) Fixed target at 0. ft down-range, 0. ft

altitude,.
b) 1Initial missile ground-range -6778. ft
¢) Initial missile altitude 4260, ft
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d) Initial missile offset normal to

REF LOS, xj(0o) 300. ft
e) 1Initial missile range along

REF LOS -9000. ft
£) 1Initial missile velocity normal

to REF LOS, x2(o0) 0. ft/sec
g) Missile velocity along REF LOS

(constant, toward target) -2000. ft/sec
h) Angle of REF LOS from

horizontal 30. deg
i) Specified terminal time T 4.5 sec

j) Disturbances: gravity
(helpful) and wind

(nonhelpful)
k) Control weighting parameter r 1.0
1)
50 0
S =
0 10
to achieve weighting on x3(T) and x2(T).
m)
0 0
Q=
0 0

the optimal disturbance-utilizing control for sub-case
4.3.3 was comp 'ted as in the previous homing intercept prob-
lems, :ud the resulting missile trajectory is shown in Fig-
ure 4-5*', with the disturbance-accommodating control forces
displayed at selected times. Note the increased level of
mug ot t = 2.0 (compared with the level at t = 1.0)
required to handle the wind disturbance which begins at t =

1.7 seconds and ends at t = 2.5, The control at t = 2.5

A 0

aemg e o

L3 ey R o £ g e
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reflects the wind disturbance and the requirement to achieve
the specified angle at t = T, The result is a reversal in
the sign of mu® for the remainder of the flight. Con-
siderable control force levels are required for this case as
t + T, as distinguished from the previous cases (with no
angle specification) which had the control approaching zero
for £t =+ T,

The effects of the wind and the angle specification on

the coatrol are clearly seen in Figure 4-55, where a large

L transient is required between t = 1.7 and t = .5 to handle
the wind and the control force continues to increase as
t ~ T. No wind disturbance effects are seen in the be-

havior of the states x| and X» (Figure 4-56), indicating

that the disturbance-utilizing control is doing very well in

accommodating the disturbance. The effect of the velocity

weighting term in S is seen as the decrease in the value of
X2 as t * T. This assures that the velocity vector of
the missile lies almost parallel to the reference LOS as

t - T; i. e., along a direction very close to 30 degrees
trom the horizontal. To achieve an arbitrary angle ay re-
lative to horizontal, it is only necessary to specity the

value of 1 at the beginning of the problem, which auto-

matically defines the x) and reference LOS coordinates.

This feature of the model, which was suggested in [35], 1is 1

applicable to a general class of homing intercept problems

where the approach angle is important,

- ey Sar =y i S s
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Figure 4-56.
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Figure 4-57 shows the disturbance inputs for this

problem. The wind disturbance waveform is as given in
Figure 4-5; the orientation of the wind for Sub-case 4.3.3
is along the positive x) coordinate, such that the wind
acceleration WINDM of Figure 4-5 is tending to move the
missile away from the REF LOS. The gravity component along
X] 1s negative, acting to move the missile toward the REF
LOS.

The effects of the disturbances result in a utility

value which is almost always negative (Figure 4-58) except

for two very brief positive excursions resulting from the
derivative of the disturbance. Recall that the utility
function (Egquation 2.108) depends on all elements of the
disturbance vector z, which includes z] = w and

2y = z] = w in the disturbance model (Equations (4-69) -
(4-73)) being used).

The performance Of the missile with disturbance-
utilizing control is summarized in Table 4.7, where it is
compared with that of the conventional linear-guadratic
controller. The disturbance-utilizing controller achieves a
lower value of J (and therefore a positive total
effectiveness #7); uses less control energy, based on EU;
uses less fuel, based on EAU; and achieves a lower value of
x1(T). Inclusion of terminal velocity weighting in this
problem results in trajectory angles (at t = T) of -0.307
degrees and -1.52 degrees (relative to the 30 degree

orientation of the REF LOS) for the disturbance-utilizing
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Figure 4-57. Disturbance acceleration w; for Sub-case
4.3.3.
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Figure 4-58., Disturbance utility for Sub-case 4.3.3.
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TABLE 4-7. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.3.3.

w,
pajoem. jove 7

pxrg

MISS-
PERFORMA CONTROL| CONTROL|DISTANCE igéigcgggéR
ANCE ENERGY | FUEL NORMAL o
INDEX TO REF LOY t= -
J ‘o kU EAU X1 (T) | “mD | (DEGREES) A
- (FT) % *
DUC 0'721 13.5 0‘622 200.0 0.7 85.1 -0.307 -100
X10 X10
0.821 0.753
LQ p 2 229.0 | -4.7 -0.152
X10 X10

NOTE: SEE PAGES 202, 205, AND 220

J, {T' EU, EAU, {MD AND {A'

and conventional LQ controllers, respectively. This is

reflected in the large negative value of &p, where

(angle error at t=T)
‘;Aa g LQ

(angle error at t=T)

-(angle error at t=T) b
DUC x100% (4-82) i

LQ

However, both controllers show very good control of the
trajectory angle at t = T, Note that the DUC in this sub-

| case achieves much smaller miss-distance than the LQ

|
¥
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controller, at the expense of a larger angle error at t = T,
In those applications where larger trajectory angle errors
can be tolerated, less weight may be placed on the velocity
state (in matrix S), which should lead to lower values of
control energy and fuel comsumption, and/or lower values of
riss-distance x}(T). The total effectiveness £y for

this sub-case is positive for various values of specified

terminal time T (see Figure 4-59), demonstrating that the

DUC performance is consistently better than that of the LQ

controller.

A 7 TOTAL . 710 " Jouc . 1004
40 - EFFECTIVENESS JL Q
304
20 -
10+
0 7 - ! T T — T
0 1l 2 3 4 5 6

SEC

Figure 4-59, Total effectiveness €1 versus specified
terminal time T for Sub-case 4.,3.3.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER WORK

5.1 Introduction

The research described in this document constitutes
the first application of disturbance-utilizing control the-
ory to missile guidance problems. In fact, the work de-
scribed herein is apparently the most substantial applica-
tion of disturbance~-utilizing control theory so far attemp-
ted for any control problem [38]., This chapter presents the
conclusions of this research and offers recommendations for

further work.

5.2 Conclusions

The results of this investigation have demonstrated
that, in many cases, the disturbance-utilizing controller
produces significantly better performance than the con-
ventional linear-quadratic controller. This superior
performance is realized even when the relationship between
the plant state x and the disturbance state z is such that

the disturbance utility & is never positive during the con-

trol interval. The concept of "effectiveness" and associ-

ated effectiveness measures such as total effectiveness
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&7, and miss-distance effectiveness # yp has been intro-
duced as a means of relating practical aspects of the
performance of the disturbance-utilizing controller to those
of a conventional linear-gquadratic controller under the same
conditions. By means of these performance measures it has
been shown that a large class of missile/target/disturbance
scenarios exists for which the disturbance-utilizing con-
troller provides significant improvements over the con-
ventional LQ controller in terms of practical criteria used
in the missile industry. For example, in the seven mis-
sile guidance cases considered in Chapter IV, the terminal
miss-distance obtained by the disturbance-utilizing control-
ler ranged from 3.4% to 56.1% of the terminal miss-distance
obtained by a conventional linear-quadratic controller under
identical conditions. In addition, although the seven mis-
sile guidance cases of Chapter IV were designed with minimum
miss-distance as the primary control objective, in most cas-
es the disturbance-utilizing controller required less con-
trol energy and less control fuel than a conventional
linear-quadratic controller. 1In one homing intercept pro-
blem (Sub-case 4.3.1) the control energy and control fuel
required by the disturbance=-utilizing controller were only
6.7% and 25.7%, respectively, of the control energy and
control fuel required by a conventional linear-quadratic
controller.

The necessary and sufficient conditions have been found

for the existence of steady-state solutions of the six
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unilaterally-coupled matric differential equations which

govern the solution of the set-point and servo-tracking
problems in disturbance-utilizing control. These conditions
determine the existence of steady-state disturbance-utiliz-
ing control laws. Futhermore, it has been shown that these
steady-state solutions, when they exist, are solutions of
certain matric algebraic equations. Numerical computational
approaches have been suggested for obtaining the steady-
state solutions.

Several mathematical/geometric properties of the util-
ity functicn #, in the case of time-invariant systems, have
been found; namely,

(a) An expression has been obtained for the zero-utility
boundary, in the set-point regulator/servo-tracking distur-
bance-utilizing problem, for the case of o > n + v ( p is the
dimension of the disturbance state vector z, n is the
dimension of the plant state vector x, and v is the dimen~
sion of the set-point vector c).

(b) The size of the positive-utility domain in the set-
point regulator/servo-tracking disturbance-utilizing problem
with o = n = v = 1 is described through the introduction of
a new parameter ecz (the angle, in the c-z plane, between
the zero-utility planes). This parameter is used in con-
junction with the previously-used paramenter exz {(the an-
gle, in the x-2 plane, between the zero-utility planes) to
allow a graphical interpretation of the size of the

positive-utility domain throughout the control interval.
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(c) The limiting behavior of the utility function #(t)
and its derivative d#/dt has been determined for t -+ T (i.e,
at the terminal time) and for the steady-state condition
(where "backward-time" t + » ), In addition, the
critical=-point condition which characterizes the location of
maximum ¥ with respect to z in (x, ¢, z)-space has been
derived.

In this document, derivations have been presented
for the steady-state gain expressions associated with

(1) a scalar regulator with a constant disturbance, for
both the zero set-point and non-zero set-point cases;

(2) a scalar regulator with an exponentially-decaying
disturbance, for both the zero set-point and non-zero set-
point cases; and

(3) the zero set-point regulator with a second-order
plant and a vector (two-dimensional) disturbance.

In addition, numerical solutions have been obtained for
each case, which allow the performance of the disturbance-
utilizing controller to be compared with that of a con-
ventional linear-quadratic controller.

The robustness of the disturbance-utilizing control law
relative to a mismatch between the disturbance model and
actual disturbance inputs has been examined in this study.
Several missile guidance cases are considered in which dis-
turbance inputs (e.g., aerodynamic drag and winds) are ap-

proximately modeled by the assumed mathematical disturbance

process. Specific cases of intercept problems have

>
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indicated that the match between drag waveforms and the
assumed "step plus-ramp" second-order disturbance model is
excellent. Some performance degradation can be detected
when the faster-changing wind waveforms are experienced, but
the overall effectiveness remains high as long as the faster
modes of the waveforms do not constitute a dominant part of
the disturbance. Whether or not one should attempt to mod-
ify the mathematical disturbance model to obtain a closer
match to real-life disturbance waveforms depends on the
results of a trade-off between increased design complexity
and incremental performance improvement to be gained.

A unique digital~computer analysis tool (DUCAT --
Disturbance-Utilizing Control Analysis Technigue) has been
developed for implementing the disturbance-utilizing control
law, the equations of the plant being controlled, and the
disturbance models. The computer program also implements
the corresponding coanventional linear-quadratic control law
for comparative analysis in terms of the effectiveness of
the disturbance-utilizing control law. A key feature of
DUCAT is the capability of obtaining the "T-Minimin" value
of the optimized performance index J°[T] for a given distur-~
bance utilizing or conventional linear-quadratic problem.
The program determines the optimal values Jo[Ti] for a
selected set of values of specified terminal times Ti in

some specified interval [r Then, the program

min’ Tmax]'
selects the minimum optimal value J;in among that set and

emd L




then displays the optimal control and trajectory for the

particular Tm. corresponding to J;i

in
The control of an air defense interceptor missile in the

n*

face of a disturbance environment consisting of gravity, aer-
odynamic drag, winds, and target maneuvers has been found in
the context of a general planar geometry configuration. In
this approach, the components of the disturbance-utiliz-

ing control are determined along the missile's longitudinal
and lateral coordinates. The problem of controlling a hom-
ing missile to a ground-based target in the face of gravity,
winds, and a specified trajectory approach angle has been
solved by using a so-called "small line-of-sight angle"
geometry, in which the disturbance-utilizing control force
is found as a force normal to a reference line-of-sight
passing through the target position. Although the "small
line-of~-sight angle” homing model as applied herein is used
for fixed-target cases, this model may also be applied to
the disturbance-utilizing control of a missile in an air de-
fense role against a maneuvering target. The disturbance-
utilizing controller is seen to be well suited to ac-
commodating typical target maneuver waveforms.

5.3 Recommendations for Further Work

The present study has uncovered several areas for
further work in disturbance-utilizing control theory. In

particular, it is suggested that further work be directed as

follows:
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(a) The application of disturbance-utilizing control
should be considered for a three-dimensional, 6-degree-of-
freedom missile intercept model with complex aerodynamics,
control limits, autopilot dynamics, and a non-ideal state-
reconstructor. This would be a logical follow-on to the
present work., Computational algorithms for obtaining the
time-varying gain matrices Ky (t) and Ky,(t) should also
be investigated as part of this applications-oriented task.

(b) The applicaticn of disturbance-utilizing control to
a discrete missile control problem would be useful, in view
of the trend toward using sampled-data and microprocessor
techniques in future missile designs. Relevant work in this
area includes investigating ways to obtain the time-varving
gain matrices for this problem via solutions of difference
equations or by implementation of alternative, discrete
algorithms for generating these matrices., Other work may
include the formulation of the discrete plant/disturbance
state reconstructor (estimator) for the discrete missile
control problem,

(c) The design of the performance index for disturbance-
utilizing control appears to be a fruitful area for further
study. One question of particular interest is how to choose
the performance index parameters S, Q, and R, in the general
case, to maximize utility and effectiveness. Also, how to
enhance utility and effectiveness (possibly by using time-

varying parameters Q and R) during critical parts of the
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control interval, such as, for example, near the terminal

time. Another question of interest is how to choose S, Q,
and R in a systematic way to achieve missile trajectory
shaping and to reduce the sensitivity of intercept perfor-
formance to errors in estimating time-to-go. In this re-
gard, results from the homing intercept Case 4.3.3 of the
present work indicate that the use of non-zero weighting on
the "velocity" state at terminal time (in the S matrix)
produces terminal performance which is less sensitive to the
choice of specified terminal time T than for the standard
intercept problem where only the position states are
weighted,

(d) An investigation of multi-mode disturbance-
accommodation in the missile guidance problem should be
profitable. For example, some missile intercept scenarios
may call for a combination of disturbance absorption/
minimization and disturbance-utilization. An interesting
question in this regard is how to relate mode-switching
criteria to utilization and effectiveness levels, recog-

nizing that positive effectiveness may be obtained, in the

disturbance-utilizing mode, even when the utility is
negative. The design of disturbance-absorbing controllers
by the generalized "algebraic/stabilization method" [39] may
be useful in such problems.

(e) A systematic method for finding a dynamic mathema-

tical model corresponding to actual measurements of real-
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life disturbance wavetorms would be especially useful in
applications such as missile intercopt, where the composite
disturbance waveform may be quite complex. A related usctul
area of study would be the investigation of a systematic
way to choose a disturbance model with a specified level of
approximation error relative to an expected disturbance
waveform.

(t) Many potential applications of disturbance-utilizing
control are suggested, (n both regulator and servo-tracking
problems, by the critical necd to conserve energy and tuel.
The efticiency ol the disturbance-utilizing approach is
readily seen in the cases considered in the present study,

where signtticant savings of control energy and control tuel

consumpt ton are vealized.  Other candidate applications torv
apprectable savings wn control onergy and tuel appear to be
automobile speed and steeving control, atvcvatt tlight path
control and tully actomatic Landing systems:, ship steering
systems, pointing and tracking systems tor large antenna
arrays and spacecratt control in the presence ot diastur-

bances such as gravitational ticlds.
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APPENDIX A

AN EXAMPLE DESIGN OF A REDUCED-ORDER
COMPOSITE-STATE RECONSTRUCTOR (ESTIMATOR)

A.l Introduction.

This Appendix describes an example design of a
reduced-order composite-state reconstructor (estimator) for
a system with a second-order plant and a second-order
disturbance model. The purpose of this Appendix is to
illustrate the design approach to, and final form of, a
composite-state reconstructor for a typical missile
application. The plant and disturbance models used in this
example correspond to the missile homing problem considered
in Section 4.3 of Chapter 4, with the exception that in the
present case it is assumed that the output y consists of
only the one state element Xy . The only on-line input
data available to the state reconstructor is the output y(t)
and the control u(t).

Johnson (5], [36] has formulated and solved the problem
of observing the states x and z of the general time-varying

linear dynamic system

x = A(t) x + B(t) u(t) + F(t) w(t) (A-1)
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Yy = C(t) x (A=2)

z = D(t) z + M(t) x + o (t) (A-3)
w(t) = H(t) z + L(t) x (A-4)

where x is an n x 1 plant-state vector, A is an n x n plant
matrix, B is an n x r input matrix,uis an r x 1 control
vector, F is an n x p disturbance input matrix, w is a p x 1
disturbance vector, y is an m x 1 output vector, z is a

0 x 1 disturbance state vector, D is a p x p disturbance
process matrix, M is a p x n matrix, o is a sparse sequence
of impulses, H is a p x p disturbance output matrix and L is a
Pp Xx n matrix. One "recipe" for building a physically
realizable device which operates on the output y and the

control u to produce estimates of x and z is given by (5]},

[38]
A A+ FL + K.C |FH ° K B
X
.’-(-— = 1 — — - __i— y(t) + | — u(t)
- M + K,C D ~ K o} (A=5)
> 2 - 2

where all the matrices may be time-varying, ; and z are
estimates of the plant and disturbance states, and K; and
K, are gain matrices which are chosen to stabilize the
solution of Equation A-S. The state reconstructor
Equation A-Z has dimension (n + ¢). In a 1971 paper [6]

Johnson derived a different form of observer for general
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time-varying systems of the form Equations A-1 - A-4, This

different state reconstructor has reduced dimension

(n + o - m), where m is the rank of the output matrix C.

The recipe for this reduced-dimension state reconstructor

may be stated as follows: The estimates X of the plant

state and z of the disturbance state are given by the

algebraic "assembly" equations

= - (A=7)
z =T,, (£ -Ly)
where the auxiliary variable £ (t) is generated on-line by

the (n + p - m) - degree system (dynamic filter)

é = (2 +Z x) E+ VY y+ Qu

The filter (Equation A-8) is driven by the plant output y
and the control u, and the matrices in Equations A-6 - A-8

are defined as follows:

a) The matrices T2 and T32 have dimensions
nx (n +p-=-m) and o x (n + p - m), respectively, and are

chosen to satisfy

T —

S g NP TR 2 Ay g e o e o8 M A0

. QU T T WSS TP " A L M S G
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Z 0 ; rank n+p-m (A-9)

[ — ]
(@]
(o]

—_—
|b-3

—
N
1]
IF-B
-
[\*]
i

It is remarked that T)2 and Ty2 always exist, are not
unique, and are readily computed.

b) The elements of the matrix I are chosen to
satisfy certain stability specifications, as will be seen in

the example to follow.

c)
A |rr|]|T T
@ =[T12|T22] om Tﬁ -] 22 (A=10)
22 T22
X =[c | 0] _A_. fﬁ _Tiz_ - Tﬁ (A-11)
(0] D T22 TZZ
d)

- #T .

Ty _ (@ + T o) I+ I (A-12)

Rriyc »

At e
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Q= (T, +IC)B (A-13)
c* = (cch-1c (A-14)
e)
- - T T -1 T (A-15)
Tia = (Ty," Ty + Tyt Tyy) 7 Ty
_ T T 1. T
Tyy = (Tyy Typ + Tyy Tya) 7 Ty (a-16)

The reduced-dimension state reconstructor Equations
(A-6) through (A-8) produce estimates which have estimation

~ ~
errors €y = x - x and €; = z - z given by

P TPy
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oy e

E. =X - X = le € (A-17)

z 22 € (A=18)

where the error variable € is governed by

B sl A L T R e s T - 3.

PP

E
g = (2 + LX) €+ 622 g (t) (A-19)

where, as mentioned before, I is chosen to satisfy the
stability requirement that e(t) -+ o promptly, from any

initial condition € (tg).

A.2 The Design Example

In this section we consider the design of a
reduced-dimension composite-state reconstructor for the

special case where the system matrices have constant

RN e A N Y TS TR B TIPS TS s, ML Y YoY%, T PN %A 00

3™

elements and are specified as

ey

K
>




This problem has

n = dim A = 2

O = dim D = 2

m = rank C = ]
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Hence the reduced-dimension observer has dimension
(n+0-m) = 3.

The matrices T), and T3 are respectively, any
nx (n+¢-m =2 x 3 matrix, and any p(n + ¢ = m) = 2 x 3

matrix satisfying
T T
12 | 12
[C O] —=—=1}| = 0 ; rank [_] = 3 _
I [TZZ] T22 . (A-26)

We will choose

- 0 0 0

r..=|0 Y O (A-28)
22 "o o 1

It is readily verified that

(A-29)

[l 0 IO 0]

OO }+O
o |OO
OO
in
o

ry
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0 0 0]
rank | 20 01} -3 (A=30)
0 1l 0
0 0 1
and therefore A-26 is satisfied. Then we have
0 0 1l
= T T -1 ., T _ -
Tig = (Typ Typ ¥ Tap Tpp ) " Ty =] 0 0 0} (A=3DL)
0 0 0
0 0
s - T T -1 T
Tap = (Typ Typ + Tpy Typ) ~ Tpy = 10 (A=32)
Next, Ty and T, are used in Equations (A-10) and
(A-=1ll) to find & and X¥. The result is
(A~33)

(A-=34)
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The characteristic matrix of the error Equation (A-19)

is

DY 1
(@ +L¢) = z, 0
23 0 0

which has eigenvalues which satisfy

~

2

AT = Ly AT - Iy X - 23 =0

which may be written as (note: the I are all real)

(A + a) (A2~br-c) = 0

The roots of Equation (A-36) may be written

Ap s Ay = S % —;-Jb2+4c i b<O

b-as= El

where

(A-35)

(A-36)

(A=37)

(A-38)

(A=39)

(A-40)

e ——r—

pighy o v <

ma. s e,

A e
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ab+c= 22 - (A=41)
acs= 23 (A=42)

For this problem, the design parameters a and b are chosen
to give eigenvalues with relatively large negative real
parts in order to obtain fast settling times for the

estimates. The following values were chosen:

a= 30 (A-43)
b = -42 (A-44)
c = =541 (A=45)

The corresponding eigenvalues are

A = =30 (A-46)

X A, = =21 % 3 10

2" 73 (A-47)

which yield the values

21 = b - a=-72 (A-48)
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T AT, O e T > i

22 = ab+c = =-1801 (A-49)

el e s e e SR SR 8

23 = ac = =-16230 (A=50)

Next, Equation (A-12) is used to find

e
BT e

2
2+ I - 3,383
v o=-lzjn, v I3 ) = (- 113,442 (A=51)
, I,I, - 1,168,560 %

Zl 1l 1
0
{ = 22 0 L = 0 (A=-52)
23 0 0

The differential equation governing the auxiliary :

variable £ is thus obtained as

B s KPR L g e i

% SR YA "I~ I
g, | =5, o 1 g+ | 5y -n )y sy
&3 I3 0 0] \&; =iy I3
1
+ 0 u '
0 {
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where I}, L7 and I3 are specified in Equations (A-48)
through (A-50).
When the parameters of this example are substituted

into Equations (A-6) and (A-7) the state estimates become

~ oL 0 (A=-54)
- |y o+ g

R £, I,

z = - Y A-55)
&3 Ly (

where the values of £], I2 and I3 are specified in
Equations (A-48) through (A-50) and &1, £2 and 3 are
the solutions of Equation (A~53).

A block diagram of the final state reconstructor is
shown in Figure A-l.

If the gain values in (A-48) - (A-51) are judged to be
too large, they can be reduced by making appropriate reduc-
tions in the (magnitudes of the) real parts of the choosen

roots (A-46), (A-47),

AT O T T AT IR S e e BT R T




PLANT

OUTPUT
Y :
b
¥ !
. ¥
PLANT + 3 t
CONTROL — g » @) = / ¢
u * E
Y 5
-1 2
st K= [ lcTicc-1, F ;
+ - ¥
+ X
& LE3"'12
§
P Parameter values:
! - -3,383 -72
[ y = -113,442 | © § = -1,801
’

-1,168,560 -16,230 ¢

v, _[o o o] o, =[o 1 o] §

0 j 0 0 1 ;

[ -2 1 o

: (D + L o) = -1,801 1 :
| -16,230 0 %

Figure A-1l, Reduced-order state reconstructor for the
example design.
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APPENDIX B

DIGITAL PROGRAMS FOR ANALYSIS OF
DISTURBANCE-UTILIZING CONTROL SYSTEMS

B.l Introduction.

This appendix describes the digital computer programs
used in Chapters III and IV to solve for the disturbance-
utilizing control and to obtain data used in the analysis of
its performance. The basic program, called DUCAT (Distur-
bance-Utilizing Control Analysis Technique), has three
versions: DUCATl--for scalar plant/scalar disturbance/
scalar set-point problems, DUCAT2--for zero set-point
problems with a second-order plant and a second-order
disturbance model, and DUCAT3--for zero set-point problems
with a fourth-order plant and fourth-order disturbance model
(or two second-order disturbance models).

The DUCAT prodram can implement either a disturbance-
utilizing control law or, for comparison, a conventional
linear-quadratic control law for a time-invariant: plant
(2.1), (2.2), disturbance-command models (2.3), (2.4),
(2.6), (2.7) and performance index (2.5). The time varying
gains are obtained by solving the matric differential equa-

tions using Runge-Kutta fourth-order integration via ACSL
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(Advanced Continuous Simulation Language) on a CDC-6600
computer., ACSL is also used for integration of the plant
differential equations. 1Initial conditions for the forward
integrations of the gain eguations are found by performing
backward-time integrations of these equations, starting at a
specified terminal time T, with the known terminal
conditions, and integrating back to the time ty = o. The
values of the gains at t = o are then stored, to be used as
the initial conditions for the subsequent forward-time runs.
This procedure is used to avoid the storage requirements
associated with storing the gain time-functions for all
o<t <T.

An important feature of DUCAT is the capability of
solving for the "T-minimin" values of the performance index
J, in either the disturbance-utilizing or conventional
linear-quadratic problem. The values of J[Tj] are
obtained for a selected set of values of specified terminal
times Tj in some specified interval (Tpins, Tmaxl. The
program then selects the minimum value Jpjn, among that set
and displays the optimal control, state trajectory and
related parameters for the particular Typjp corresponding
to Jmine

The flow of the basic DUCAT program, which describes

all three program versions, is presented in Fiqures B-1 and

B-2. Listings of the three program versions are contained

in the following sections.

Ry W, O S8 e Ve 4 <

PN ey
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ENTER

y

ARRAY (DIMENSION) 1

SET INPUTS
LOOP1 -
BACKWARD
INTEGRATIONS
OF DIFFERENTIAL
EQUATIONS FOR
kx, sz, LZ, ETC. +
OUTPUTS: GAINS pr sz, Kz, ETC.,
AT SPECIFIED TIMES.
YES T
N LESS THAN
(T;) MAX?
LOOP2 - NC INPUTS TO FWD INTEG:
KXIC, KX2IC, KZIC, ETC.
LOOP3 SELECTED FROM KXT KXZT,

KZT, ETC. STORED TABLES.

[

FORWARD INTEGRATIONS
OF PLANT, GAIN EQNS FOR
X, hx, sz, Kz, ETC.

COMPUTE U°, J

OUTPUTS: J FOR

EACH IC KX' K K

Xz' "z

KEEP INTEGRATING
TILL T T

HAVE WE MADE A RUN
FOR EACH IC SAVED?

GO GET NEXT
Ti AND COMPUTE .
OUTPUTS: FAMILY
OF Jj VALUES AND
CORRESPONDING T
VALUES ,

Figure B-1, Flow of DUCAT program, first segment.

i




[

FROM TEST ON I

INPUTS: FAMILY OF
Ji VALUES

AND Ti VALUES

A

FIND MINIMUM VALUE OF J
AMONG THE Jj; IDENTIFY THE
CORRESPONDING Tj.

OUTPUTS: MINIMUM Ji

LOOP 4
AND ASSOCIATED Ti

ONE FORWARD RUN FOR RECORD
USING THE (T;) WHICH GIVES
MINIMUM (J;). USE

GAIN MATRIX IC'S ASSOCIATED

WITH THIS T;. COMPUTE X, KX, KXZ,
Kz, U9 J, UTILITY, ETC.

YES T
.LE. (Tj)MIN

PLOT: X, Z, Kxij’ KXZij,-KZij,
UTILITY, ETC. FOR THE RECORD
RUN WHICH HAS J=J MIN. ALSO
OUTPUT TABLE OF J VALUES VS T,

PRINT MISS DISTANCE.

A

( stop )

Figure B-2. Flow of DUCAT program, final segment.
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B.2 Program DUCAT1

This section contains the listing and parameter
definitions for the DUCAT1l program, which solves for a
disturbance-utilizing control or a conventional
linear-quadratic control in regulator problems involving
scalar plant/scalar disturbance/scalar set-point. Non-zero
set-point or zero set-point regulator problems may be solved
by DUCAT1. Input parameters (determined by "SET" statements

near the end of the program), and plot output parameters

(identified in the "PREPAR" statement at the end of the

program) are defined below. 1In addition, the printed output

parameters are also defined.

INPUT PARAMETERS

PARAMETER DEFINITION
ALPHAS o as defined in Chapter 1II.
AS A as defined in Chapter III.
BS B as defined in Chapter III.
CINTFD Forward-time data communication

interval (sec).

CINTBD Backward-time data communication
interval (sec).

cs C as defined in Chapter III.

CSETS Set-point input (£ft).

Py




Cls

DTBCK

DTFWD

ES
FS
GS
HS

IALG

Qs
RS
S8

TFINIT

XSIC

C; as defined in Chapter III
(£t/sec?).

Integration interval, tackward-
time (sec).

Integration interval, forward-
time (sec).

E as defined in Chapter III.

F as defined in Chapter I1I.

G as defined in Chapter III,

H as defined in Chapter III.

Logic input. Selects fourth-order
Runge-Kutta integration when

IALG = 5,

Q as defined in Chapter III,

R as defined in Chapter.III.

S as defined in Chapter III.

Maximum value Tpayx for final-
time scan (sec).

Initial condition of the state
x (ft).




AD=~AOB1 110

HBsnc

ARMY MISSILE COMMAND REDSTONE ARSENAL AL SUIDANCE A==ETC F/@ 1271
THEORY OF DISTURBANCE=UTILIZING CONTROL WITH APPLICATION TO MIS==ETC(U)
DEC 79 W C KELLY

UNCLASSIFIED ORSMI/RG=B0-11 NL




PLOT OQUTPUT PARAMETERS

PARAMETER DEFINITION

T

XSP
2SspP
RXSP
KXCSP
KXZSsP
KCSP
KCZSP
KZsp
WSP
VSP
UOPTSP
BURDSP

ASSISP

UTILSP
THXZSP

THCZSP

il st

Program time (sec).

x as defined in Chapter III.

z as defined in Chapter III.
ky as defined in Chapter III.
kyc as defined in Chapter III.
kyz as defined in Chapter III.
ke as defined in Chapter III.
Koz as defined in Chapter III.
k; as defined in Chapter III.
w as defined in Chapter III.
Unused.

u® as defined in Chapter III.
Burden as defined in Chapter III.

Assistance as defined in Chapter
I1I.

Utility as defined in Chapter III.
8xz as defined in Chapter III.

f8cz as defined in Chapter III.

ikttt st ot RS .. ... Ty, iJ
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PARAMETER

KXST
KXCST
KX2ST
KCST
KC2ZST
K7ZST

TAUTAS

JMATAB

J2TAB

J3TAB

JTFTAS

XTABS

PRINTED OUTPUT PARAMETERS

DEFINITION

Stored initial-condition of kg.
Stored initial-condition of kyq.
Stored initial-condition of kyj.
Stored initial-conditjon of k.
Stored initial-condition of Kkggz.
Stored initial-condition of k,.

A particular specified terminal
time T;.

vValue of ¥eT(T) s e(T).
T
Value of % [/ e (t) qe(t) dt
0
T
Value of ¥/ r u“(t) dt
0

J (T)

x(T).

The listing of Program DUCAT1 follows:
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DucaTry
PROGRAM OPTG

260

c WITH OISTURBANCES PRESENT cee
< " ALSO COMPUTE THE MINIMUM U IN A FAMILY OF J S ’ eee
c THEN COMPUTE ALSISTANCE BURDEN ANU UTILIZATION AND PLOT  ..s
= " 3 0T eee
INIVIAL

X RXSYTIUUY . KXCoYIUUT ,, RXZSTIITTY

ARRAY XCSTU10L) 4KC2LT 11000 4K2ST(200)

ARRAY XTABS€100)

ARRAY JMATAB(100),J2TABIILC) +J3TAB(L00)

ARRAY JTFTAS(1DJ) B
ARRAY TAUTASti0C)

INTEGER I+
INTEGER NS

CUNS|IN' u"uuauo' TFINI V=0, OTBCK=T,
CONSTANT AS=0,48S5204+CS=0,+CSETS=0490S=0.4FS=0e

CONSTANY
CONSTANT
CONSTANY
CONSTANT

CiS=0.,ALPHAS=(. ) - T

£S=0.,
S“..HS Do'QS L. RS20, ¢355=T., :
KXS20e 9 KXC32C e 9KXZS=0e9KCS=049KC2S=0.9K2S30.

) CONSTARY

X5IC=0,

CONSTANT WSP=(0.y BURDSP3J.s ASSISP=C.s UTILOP=0.

LOGICAL FWDBWD,LAST

NS=z)

FHS=FS®HKS
BSOR=(BS®*2) /RS
KXSIC=(C3%%2) *S3
KXCSIC=~CS®*SS*6S

RXZISIC=T. -
KCSIC={65%%) *SS

KCZSIC=0.

KISIC=d.

FWD3WD= .FALSE.
LAST=,FALSE,

CONSTANT CINTLF=0.0c

CONSTANT CINTFO=0.1,CINT3D:=C.1
MAXT=RSN(FNDBRO ,O0TFHU+0OTBCK)
TSTP = 100.

YOPTS2),

T BURDES=T. i o . M
ASSISS=0.

THXZ2S=0,

THCZS=0,

UTILS=0,

Ws=0,

‘w~‘«“'~‘u'TlUAHhB¢

Cabn oY Lo .\‘ oo '
T oo ry et T A J’
Slﬂﬁlfi\lhﬁ“””
REPRUPUChIn\?\»LY. L

wi OF PAGEDS n\ULuH DL ®OT
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2%,
T XXSP=sC, - T T TTTmT/ T
KXCSP=J.
KXZSP=0,
KCSP=(.,
KCZSP=0.
KlSP=l.
- THAXZSP=T.
: THCZISP=(.
i. XSP=G.
: ZSP=(.
- UYOPTSP=0,
JMAYES=(0.
J=T.
J3zC,
END 8§ “INITIAL"
1 DYNAMIC
; CINTERVAL CINT=0.1
MAXTERVAL MAXT=0.0l1
— T e —
CINTFL=RSWILAST,CINYLF,CINTFU)
CINT=RSHIFWDBWO,.CINTFL,CINTBD)
VARIABLE T=0.
ALGORITHKM TALG=L
IF (FWUBKWD) GO TO SKPSV
T T IRITLLEL. LY GUTO SRPSY T T T T T
NSENSeL
KXST (NS )=KXS
KXCSTI(NS)=KXCS
KXZSTINSI=KXZS
KCST(NS)=KCS
T KCITSTINSTERUZS T
K2STINS)I=KZS
SKPSV..CONTINUE
TERMT(ABSIT-TFINIT)Y . LE.CINTIDAND. NOT, FHDBNDD
IFI(FUOBWO) TSTP=CINTBO®*FLOAT (NS}
IF(FLDBWO) CINT=AMINL(CINIFL 4TSTP=T)
T CUNRSTANT TGOMN=Y.t=3 — — — "~~~ T/ 77
TERMT (ABS {T=TSTP) JLE« TGOMNL,ANDFWOBND)
DERIVATIVE OPTGN
CALL FTNDRY
KXS=INTEGIKXSD, KXSIC) N
KXC>=INTEGIYXCSJ +KXCSIC)
T T RXZISEINTEGIRXZSDZRXZSICY ——  ~ - -
KCS=INTEG(KCSDsKCSIC)
KCZS=INTEHGE(KCZSO ,KCZSIC) -
K2S=ItTEG(KZSOKZSICYH
‘ XS=INTUG{XSU,XSIC)
JE=INIEG(JS2UQT 4G4
JIETRTEGUISUOT 0.7
THXZS=ATAN2(=24*KXZSs(KZS¢+1.£-3())*57,29578
. THCZS=ATAN2(=2.®KCZS s (KZS+2,E=-30))*57.29878
ENO $ ““UERIVATIVE"
ENO §$ “OYNANMIC™
TERMINAL

S !

[TV
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IF (FWHUBWDANUGLASTY GO TO TEKRM
o YD CYCLYE 0 T T
“§1‘£(609°°)‘KX)"I,oncs‘(l’QKIZS‘lX'QKCS'(I,QKCIS""OKZSI“'-Q'
s Ja14NS) -
980 FORMAT{TIU,6E15,.5)
3 T INTEGER NSENL B
3 NSFNLaNS
E ws.: TToTThm e T o
FHDJUNDz s TRUE »
; GO Yo SETIC o
CYCLE..CONTINUE '
JUAVES=0 58 (SS*CSPCSPXS¥XS-2, 9SS CS*GSPCSETS¥*NS.. T
*+SS*GS*GS*CSETS*CHETS)
JYFSaJHRYESeJZ+JT
JMATABINS D=UMAYES
J2TAB(INS)=J2
JITABINS) U3
XTABS (NS)=XS -
JIFTASUINSIzJTFS
TAUTASTUNS) =T

SETIC..NSINSOI. Lo
IF (INS.GTNSFNL) GO TO FNLRUN
RECOR. . CONYINUE
KXSIC=KXSVT(INS)
T T RKXCSICIRXCSTINSY —
KXZSICaKXZST(NS)
KCSIC=KCSTINS)
KCZSICaKCZST(NS)
K2SICz2KZSTINS)

LOG

60 TO LCOP
FNLRUN. .CONTINUE h
JZEROS=1.E30
DO JMINS I=xg+NSFNL
IFUJZEROSLYJTFTASCID)) GO TO JMINS
(]
TFZERS=TAUTASILI)
NSaT
JMINS.. CUNTINUE
NS=d
WRITE(6+199) (TAUTAS (1) JMATAB(I) J2TAB(I),J3TABLI), vee
T ’ +TaTNSFNLY
199 FORMAT (T10,F8.2+72 . 9E20.4eT35,£10+%+T50,E10,0, X
T650€10eboTBY,E10.0) )
RENIND 8
LAST=,TRUE,
60 TO RECOR

R

1 RS

1 T R PR

“TERH.,
END 8§ “TERMINAL"®
END § “PROGRAM™
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"DSz-ALPHAS
IF (FWOBWD) GO TO 1703

C T GET DERIVATIVES FOR BACNWARD INTEGRATIONS

KXS0= (AS~-BSOR®KXS) *KXS+KXS*AS+ (LS*CS)*QS
={AS- 5 =

KXZSD=(AS~-BSOR®KXS) *KXZS¢KX 3*FHS ¢KXZ5%05

" KC8D=2.%KCS*ES-BSOR® {KXCS*<XxCS)+ {GS*GS) *QS

KCZSD=KCIS*DS+ES*KCZS-KXCS® (BSUR¥KXZS=FHS)
KZ50=2.%KZS®DS-BSORPIKXZS*KXZ5)+2.*FHS®*KXZS
J200T=(,

J300T=0. T
X50=6.
RETURN

LOOP TO COMPUTC X KX oKXZ,KZLUOPT,J
CONTINUE

XSD1=AS*X3
XS02=85*UOPTS
GET CI2TURBANCESMISSILE AND TARGET
WS=CASTEXPL-ALPHAS®T)
XSD3=FS®*NS

T KSSTSST-RXZS¥XS¥ZS=RCZS*CSETS* IS

o

XS0=XSUI+XSUZ+XS03

Z5=WS

KXS0= (- AS+BSOR¥*KXSY*KXS-RXS®*AS=-(CS*CS)I*qS
KXCoD=(~AS¢BSOR®KXS)*KXCS~KXCS®ES+CS*QS*GS
KXZSO={=-AS+BSOR*KXSI¥KXZS~-KXS*FHS-KXZS*DS
KCSU=-2+.*KCS®ES+BSOR® (KXCS®*KXCS) =(GS*GS)*QS

I RA A S B . TPV B PR - M

TRTZ3D=-TKCZS*USFESPKUZSTFRXCS*THSURYKKZSFRST

KZSU==2*KIS*US+BSOR® (KX ZS*KXZS)~2.*FHS®*KXZS
COMPUTE UDPT
DACON=1.

UQPTS=- {BS/RS) * {KXS*XS+RXCS*CSETS+KX ZS® ZS*DACON)

COMPUTE PERFORMANCE INUEX AT TeLELTF
L. “C e

C+QS*GS®GS®CSETS*CSETS)

J3ID0T=] .S*{UDPTS*UDPTS*RS)

IF (+NOTL.LAST) RETUKN

COMPUTE BURDEN, ASSISTANCE AND UTILIZATION IN RECORO RUN

BURUES=0.5%KZS*ZS*Z5

UTILS=ASSISS~BURDES
BURUSP=BURDES
ASSISP=ASSISS
UTILSP=UTILS

WSP=NWS

KXSP=KXS
KXCSP=KXC3
KXZSP=KXZS
KCSP=KCS
KCZSP=KLZS
KISP=KZS




THX ZSP= THXZS

UOPTSP= UOPTS
VSPaVs
h XSP=X$S
4 ZI5P=ZS
END

S®TRANSLATION TIME =  4.303%es
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SV ST <oy g4



SEV ALPRES:0.T — 77
SET ASsa3,
SE‘ 8581.
SET CINTFOag,
T 7 SEY CINTBU=1.
SET CS=1,

T SEVUSETSESIl. T
SET C1S=-16.1
SET prACK=0.02
ST OTFwD=20.02
Sel ¢35=0.
SET FS=1,

- SEY &S=l. T ¢
SeT MS=3,
SET 1ALG=S
SET GS=(.
SET RS=1.
SET SS=1.

SEY TFINIT=6.

SET xSIC=30.

PREPAR T NSP¢Z5P ¢KX3P ¢KXCSP ¢KXZoP ¢KUSP «KCZSP¢KZSP ees e
WSP (VSP JUOPTSP , BURDSP yASSISP JUTILSPs THXZISP, THCZISP

LA Rk
T AL TP RS
SLONTeo L 0T AR OF PAuks WilloH D

astadoddy alBLY.
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B.3 Program DUCAT2.

This section contains a listing and parameter
definitions for the DUCAT2 program which solves for a
disturbance-utilizing control or a conventional
linear-quadratic control in the case of zero set-point
(homing intercept) regulator problems with a second-order
plant and a second-~order disturbance model. Input

parameters determined by "SET" statements, and plot output

parameters identified by "PREPAR" statements at the end of

the program, are defined below. Printed output parameters

are also defined.

INPUT PARAMETERS

PARAMETER DEFINITICN
A A as defined in Chapter 1V,
ALH ap as defined in Chapter IV.
AT Transpose of A.
B B as defined in Chapter 1V,
BBT BBT.
c C as defined in Chapter 1V,
CINTBD Backward-time communication

interval (sec).

e

R RNV

LR N e —

gt Ry s

e T G e i 4

P g SO 7

T g

R o m——ry

=r s

1
I




R

CINTFD

FH

IALG

KX
KXZ

K2

RINV

]

TFINIT

VMR

VTINIC

VTR

WMXTB

WMYTB
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Forward-time communication
interval (sec).

D as defined in Chapter 1V.

Backward-time integration
interval (sec).

Forward-time integration
interval (sec).

F as defined in Chapter 1IV.
FH as defined in Chapter 1V,
H as defined in Chapter 1IV.
Logic input. Selects Fourth-Order
Runge-Kutta integration when
IALG = 5.

Ky as defined in Chapter 1V.
Kxz as defined in Chapter IV.
K; as defined in Chapter IV,
Q as defined in Chapter 1IV.
Inverse of R, Chapter 1IV.

S as defined in Chapter 1IV.

Maximum value Tpax for f£inal-time
scan (sec).

Missile velocity along LOS (ft/sec).

Initial value, velocity of missile
normal to LOS (ft/sec).

Target velocity along LOS (ft/sec).

Missile disturbance input table,
independent variable.

Missile disturbance input table,
dependent variable.
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WTXTB

WTYTB

WDMXTB
WDTYTB
WDTXTB
XIC

XMRIC

XTRIC

XTNIC

PARAMETER

Xp
Zp
KXP
KXZP

KZP

PLOT
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Target disturbance input table,
independent variable.

Target disturbance input table,
dependent variable.

Unused.
Unused.
Unused.
Initial-condition value of x vector.

Initial-condition value of missile
position along LOS (ft).

Initial-condition value of target
position along LOS (ft).

Initial-condition value of target
position normal to LOS (ft).

OUTPUT PARAMETERS

DEFINITION

Program time (sec).

x as defined in Chapter 1V,

z as defined in Chapter 1IV.
Kx as defined in Chapter 1IV.
Kyz as defined in Chapter 1IV.
Kz as defined in Chapter 1IV.

w as defined in Chapter IV,

Net target disturbance (ft/sec?).

Y W AUt & a1 e
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WM
BURDEN
ASSIST
UTIL

JZERO

TFZERO
UOPTP
XTNP
XTRP
XMNP
XMRP

THMVP

XTP
XTP
XMP
YMP

XMD

YMD

XML

YML
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Net missile disturbance (ft/sec).
Burden as defined in Chapter IV,
Assistance as defined in Chapter 1IV.
Utility as defined in Chapter IV.

Minimum value of J in a set of
Ji values.

Value of T corresponding to JZERO.
u® as defined in Chapter IV,

Target position normal to LOS (ft).
Target position along LOS (ft).
Missile position normal to LOS (ft).
Missile position along LOS (ft).

Missile velocity vector angle,
degrees.

Target position, horizontal (ft).
Target position, vertical (ft).
Missile position, horizontal (ft).
Missile position, vertical (ft).

Missile velocity, horizontal
(ft/sec).

Missile velocity, vertical
(ft/sec).

Unused.

Unused.

P IR RN — 1 4

i e Boae” e e

d——m

R N T o T i’

71 e e

TS R AR et W o

AN T NS G Ry

}




PRINTED OUTPUT PARAMETERS

PARAMETER DEFINITION

KXT Stored initial-condition of K.
KXZT Stored initial-condition of Kygz.

KZT Stored initial-condition of K;.

T iy TP TN

TAUTAB A particular specified terminal
time Tj.

JMATAB Value of % xT(T) Sx(T)

GO AP W

T

Value of % / xT(t) Qx(t) dt
)

i g Y T

T 7
Value of % / u (t) Ru(t) 4t

o

e, .

JTFTAB Value of J at t = T.

X1TAB xl(T).

X2TAB xz(T).

EAUTAB EAU as defined in Chapter 1V,

EUTAB EU as defined in Chapter 1V.

The listing of Program DUCAT2 follows:

on TS & ST T K ST T HN WP TR« P VRN o o A LD L 18
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pucAaTZ
PROGRAN OPTC
COMMENT COMPUTE OPTIMAL CONTROL FOR CASE OF MISSILE INTERCEPY s
C WLITH UISTURBANCES PRUSELNT cee
c ALSC COMPUTE THE MINIMUM J IN A FAMILY OF 4 S eos
C THEN COMPUTE ASSISTANCe BURDEN AND UTILIZATION ANO PLOT “ee
C
* INITIAL
ARRAY AC242)9AT(242) o802 eBTIL142)4BHTI2,2)4C(142),0(2,2)
ARRAY FU2ol) o HUL o) oFHEC o2 oKX (2 o2) oKXIC(242) ¢KXZ(242)
ARRAY KXDOT (2 42) oKX ZDOT (L0 2) ¢KZOOT(242) oX{201)028241)4Q0242)
ARRAY SE292)eV1€241)4V2(241) V312410 ,XDOT1(2,1),X00T2¢2,1)
ARRAY XDOT3€291) o XDOTIC+1) o XICE241) 4KXT(242,100)
ARRAY KXZTL2 ¢ 0300) vKIT(2925100) ¢ WMXTH(D) JHMYTD(bL) ¢HTXTH(G)
ARRAY WIVIBUOY ¢ XT {1420 42T (142) ¢Vi2:1)+ARA(2,2),ARBL2,2)
ARRAY KXBBT CZs2) o ARCUC 420 s ARU 242D dARE 12 42) JARF 12, 2)
ARRAY ARGLRZ o) s ARHILZ ¢2) s ARKT (242) s BBTKX 2262V ARI(242)0ARI2,2)
ARRAY ARJT L2 ¢2) o TAUTAU( 100 4SX (2411 JTFTAB(L10G)
ARRAY K203 2) o KXZIC (2421 oR2IC1242) 4KkXITR(2,42)
ARRAY WUMYTB(10) 4y WONMXTUB (10D 4 WUTYTB(0) JHOTXTB(E)
ARRAY KXP L) s KXZIP LL) 4KIP (L) E
ARRAY XP(2) o 2P (2D o X1TARHL10D) 4X2TAB(10C)
ARRAY V5(cle1)
ARRAY JUMATABLL0U) U TABILOU) USTAUC200) ,EAUTAB(100),EUTABCL]D)

INTEGER TeJ
INTEGER No

CONSTANT A=4%0,4B=2%044C22%549U3u®G. Fx200,

CONSTANT Hal®Cqe o Q=04"0,oRINV=Co 9yS=0*0,,UTBCK=0.
CONSTANY DTFWD=0. o TEINIT=04 o KXZU®(,

CONSTANT KXZI=4®%0, sKIxi* ], yHMXTB26%C, yWMYTBzb",,
CONSTANT W25, 4ND=D.

CONSTANT WTXTB26*),.WTYIB=b"0,

CONSTANT xIC=2%Q.

CONSTANT XMRIC=0, ¢XTRIC=Z0.sVMR=(, o VIR0, VMN=C, VIN=D,
CONSTANT VMNIC=LesVINIC=049oXMNIC=0,,XTINIC=0,

CONSTANT WOMYTB210®0, WUMXTB2L0%0, W0OTYTB=6®%C,. WUTXTB=0"0.
CONSTANT ALH=0.

LOGICAL FWOBWOLLAST

NS=)

DO BRDIC 1=1,2

00 BNOIC Jai,e2

KXICCI+J)=SHtI )

KXZIC(L4J4)n0.

KZIC(1,49)30.
BNDIC, . CONTINUE

CALMasCOS (ALH*0.0174%)

SALHaSINIALH®D0.017465)

FHOUNDs L FALSE.,




-
e
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LASTs FALSL, i
LOOP,.CONTINUL
CONSTANT CINYLF®Q.(0 }

CONSTANY CINTFOs0+1,CINIBU- DL H
MAXTSRSKIFNUBNDUTFROWDTHUK) ‘
UQoPTs(0.0 q
BURDEN = J.¢ .
ASSIST = JC i
UTIL = 0.7

" ] 0.0

W0=J.

Wl = 0.0

We = 0,0
CUNSTANT [32%0,
TSTP = 102,
KXP(1)aC.0C
KxPt21a0.J
KXP(3)3Q,U
KXP(&)sl, 0 :
b KX2P(1) 20,0 ‘

s e

o

KXZPL2) 20,0
KXZPt3) 20,0
KXIP (W) 23,0
K2P(1)a0,.L
k K2P(2)%0.0
] K2P(3)=0,0
K2P(4)=0,0
XP(1)u0.C
XPt2)s0.t
PL1)=0.0
P(e)=0.C
UOPTP=x0 .0
J2=D.
J3=0.
EUTADaC,
EAUTAlBa (.
J2S=0.
J2P30.
JIPs0.
tUPaC,

t AUPs O,
JMNAYERaC,
Wia0,
Tist,
XINPa (.
XTRPaD.
XMNPsO,
XNMRP=(,
X1Psg,
YiPeQ,
XMPag,
YNP30,
XML20,
YML40,
THMVP=] .

ik o a ™ ba g

>



XMD=0,
YH020.
END $§ “INITIAL®
DYNAMIC

CINTERVAL CINT=0.1
MAXTERVAL MAXT20,001
NSTEPS NSTP=1
ClNTFL'RSH(LASTpCIN‘LFoCINTFD)
CINT'RSH(FNDBHD.CIN‘FL-CINTBU)
VARIAHLE T=(.
ALGORIT M TALG:=4
IF (FRUBKRD) GO TO SKPSV
IF(T.LEL0.) GO TO SKPSV
NSaNS+t
00 SVLO00P I=142
D0 SVLOOP J=142
KXT (I 4J oNSIzKX(Led}
KX2ZT(loJeNSI2RXZ([sJ)
KZT (L4 JoNSI=KL(T 9 J)
SVLOOP .« LCONTINUE
G0 TO SKPDER
SKP SV« CONTINUL
NUSRSH(‘.EQ-O.oO.»(N-HL)I(T~VLOL.E'ZOIi
WiL=wn
TL=T
SKPUER . CONTINUE
TER"'(ABS(‘-‘FINII)-LE.CIN'HU.ANU.oNO‘.FHUB“U)
IF(FWDBWND) TSTP=CINTBU*FLOATINS)
IF (FRDEBND) CINT=AHIN1(CINIFLotSTP‘ti
CONSTANT TGOMN=1.E=-3
TERHY(ABS(T-TSIP).Lc.fGOHN.ANU.FHuBHU)
DERIVATIVE QPTGN
CALL FTNORV
KX=INTVC(KXUOTKXIC)
KXZzINTVCIKXZOOTKXZIC)
K2=INTVC(KZOOT kK ZIC)
X=2INTVC (XOOT ¢XICH
J2xINTEG(J200T4 34
J3I=INTEG(J3D0T, )
EUzINTEG(EUDOT,0.)
EAU=INTEGUEAVUDOT40.)
VINZINTEGINT4VINIC)
XTN=INTEGIVINXTNIC)
END $ “DERIVATIVE™
END $ “™DYNAMIC™
TERMINAL .
IF (FNDEND.ANDLLAST) 6O TO TERM
IF (FWDBWD) GO TO CYCLE
WRITE (6,98) CEERXTETII oI o KKD oKX ZT I T ¢ JJeKKD g
KZT‘II'JJ'KK,OXI=1'Z"JJiloZ' ’KKzloNS’
98.. FORMAT(T20+3E15.5)
INTEGER NSFNL
NSF NL =NS
NS=0
FuDBWN= . TRUE,
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G0 To SEVIC

CYCLE.CONTINUE
00 JT1 I=1,2

JTlee XTUL101)3X(Ie2)
CALL MMPY(SsXsSXs242,1)
SCHM=0,0
D0 JT2 I=1,2

JT24¢0 SCHMaSCMeXT(L14I)*SX(Ie1)
JMAYER=0,5%SCM
JTIFaJMAYER®J2+43
JMATAB(NS)=JUMAYER
J2TAB(NS)I=JY2
JITABINS)=JU3
EUTAB(INSY=EU
EAUTAJ(NS)zEAY
X1TABINSI=X(1,1)
X2TAB(NS)=X(2,1)
JIFTABINS)SJTF
TAUTABINS) = T

SETIC. « NS=NS# 4
IF (NS.GT.NSFNL) GO TO FNLRUN
RECOR,. DO IC1 J=1,2
70 ICL I=1,2
KXICCIoJ)=KXT (I 4JyNS)
KXZIC(I ¢ J)=KXZT (I +J4NS)
KZIC(IyJ)=KZT (L4 JeN>)
IC1..CONTINUE
LOG

G0 TO LoOP
FNLRUN. sCONTINUE
JZERO31 ,E30
00 JMIN I=1,NSFNL
IF (JZEROWLTLJTFTAB(I)) GO TO JMIN
JZERO=JTFTAB(I)
TFZERO = TAUTAB(I)
NS=]
JMIN..CONTINUE
NS=9
WRITE(64299) (TAUTAB(I) ¢JMATAB(I) o J2TABLI) +JITABI(I)y oo
JYFTABUI) oXLTAB(I) 4X2TAB(I) JEAUTAB(I)EUTAB(I)Ix1,NSFNL)
299, FORMAT(TUoFle2eT12¢10e49T269E10e49sTLUOELCeloons
TOULoELdalag TOB oE10okeTB829510e49T96¢EL0.4eT110,E10.4)
REWIND 8
LAST=,TRUE.
60 To RECOR
TERM.+CONTINUE
END $ “TERMINAL”
END $ “PROGRAMN™
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SUBROUT INE FTNORV

IF (FWDEWD) GO TO 1CO3

CALL MNMPY (KX,A,ARA,2,2,2)

CALL MMPY (AT KX ARGe24242)

CALL MMPY (KX oBBT yxXXBBT 424¢42)
CALL HMMPY (KXBBT KX4ARC4202+2)
CALL MMFY (KXB8TKXZoARDycs242)
CALL MMPY (AT KXZ4ARE+24242)
CALL MMPY (KXZyUsARF424242)

CALL MMFY (KX oFHoARGo2+242)

CALL MMPY (KZ DysARH.2+2,2)

CALL MMPY (DBBT KXZ4BBTKXZ424242)
D0 S5 JU=x3,2

V0 5 I=1,2

KXZTREI yulekKXZ(Jy 1)

CALL MMPY(KXZTR,BBTKXZ4ARL,20242)
CALL MMPY (KXZTRsFHsARJsLe2+2)
DO o Js1,42

D0 6 I=g,2

ARHNT(1eJU)ZARHIIJ, 1)

ARJT L J)=ARJ (U, ])

GET OERIVATIVES FOR BACKWARD INTEGRATIONS
00 10 J=1,2
V0 10 I=1,2

KXOOT (I yJ)=ARALTIVUI+ARBIIvJ)=ARCII JJICRINVQ(I )
KXZOOT(IoJI=ARGII o J) +ARF (I, J)¢ARE(LI+JI=ARD(I+JI®RINY
K200V U1 4J) ZARJILT ¢ JD*ARHIL 4 JICARIT LI o) ¢ARHT LI 4 J) =ARI (I o) *RINV

CONTINUVE

J200T=0,
J300T=0,
EUDOT=0,
EAULOT=Q,
D0 20 I=y,2
DO 20 J=1,2
X00T¢Xsu)=0.
RETURN

LOOP TO COMPUTE X KXoKXZeKZ UOPTJ
GONTINUE

SET UP TO COMPUTE
CALL MMPYLA X4XDOT1,24241)
DO 100 I=1,2
X00T2(Ll+1)2B41,1)20U0P7

GET OI2TURBANCESMISSILE AND TARGEY
WINUM=D.
IFUT LT e1.7.0RTo6Te245) GO TO 1001
WINUM=32,2%SINE3.927%(T=1.7))*SIN(3,927%(T=1.7))

T
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1031 CONTINUE
WHaWINUM=32,2°CALH

GET COMPOSITE ODISTURBANCC
Ni=),
LELLAZ RS
D0 101 I=1,2
XCOT3(Lod)=F(Llold®NW
00 162 I=142
XOOF(Iod)=X00TL LI o2 ¢ XD0TC (I 1) eXDOTItIH)
Zlls1)zN

Gt T DISTURHANCE UERIVATIVES, MISSILE AND TARGET
202410340
XMRzXMRICeVMR®T
XTR=XTRICeVIR®T
VMN=VIN®X(2,1)
XMN=XTN®X(1,1)

o B 6 PV

SET UP FOR KXyKXZ9KZ FORWARD INTEGRATIONS
CALL MMPY (KXsA4ARA(242+42)
CALL MMPY(AT,KX9ARBy242+2)
CALL MMPY(KX 4BBT 4KXBBYV42+2+2)
CALL MMPY(KXBBT ¢KX ¢ARG120¢0 2}
CALL MMPY(KXBBT ¢KX2Z,ARDy2¢2+2)
CALL MMPY(ATKXZ4ARE 9 292+2)
CALL MMPYIKXZ DeARF ¢242.2)
CALL MMPY(KX ¢FHyARGs242+2)
CALL MMFY(KZ,0sARH292,42)
CALL MMPY(BBT oXKXZ2+BBTKXZsl9242)
UG 105 J=i,2
D0 165 I=1,.2
KXZTRAUI ¢ J)2KX2Z(JeI)
CALL MMPY(KXZTRBHTKXZyARI 24242}
CALL MMPY(IKXZTRsFHyARJ$242+2)
00 10o J=142
00 1086 I=442
ARHT (I W) =ARH(J. D)
ARIT UL J)ZARJI LIS

PRy

GET DERIVATIVES FOR FORWARD INVEGRATION
0C 11C J=1,2
J0 113 I=1,2
KXDOT(IL 3 dx=ARALL yJ)=ARHBULI + JI+ARC (I JI*RINV=-0QI(I4J)
KXZUOT(I,0)==ARG(1¢J) ~ARFLI o JI =ARE (I o) +AROII 4 J) *RINV
KZ0OT (L o) 2=ARJUI o J)=ARNII ¢ J)=ARUT LI ¢} =ARHT (L oJ) ¢ARI(I +J) RINV
CONTINUE

COMPUTE UOPT
CALL MMFYIKXyXeVLi920241)
CALL MMPYIKXZ¢ZosV2ecl0241)
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D0 12?7 I=1,2

V3T 0avitlyldevatl, )
v3GC20.0

0C 121 I=1.2
USC=USC+B(I 11%v3(]I,21)
UOPT=z-RINV*USC

COMPUTE PERFORMANG: INUCX AT T,.L:I.TF
ChAlL MMFY(QeXsVDoecedel)
LO 12<¢ I=1,2
JOSTJcSeXtleldPVO L)
J200T=),.5%42S
J30)T=) . S%UQPT®#2/(DINVeL,2=20)
EU00T=2J3UUT*RINY
EAUJOT=SURT (UOPT® yOPT)

COMPUTL BURD:IN, ASSISTANCE ANO UTILIZATION IN RECORD RUN
CALL MMPY(KZoZyVae24241)
BSCzC.90
0C 210 =142
BSC=uSC+Z(Is1)®%VULil,2)
BURUEN = T.5*55C
CALL MMPY(KXZ¢ZoVuys2elel)d
ASCz20.0
DO 237 I=1,2
ASCzASCeX(Is1)®Vat],1)
ASSIST==ASC
UTIL=ASSIST=-BURDEN
XTsXTRO®CALH¢XTN®SALNH
YTs-XTR®SALH¢XTN®CALN
XM= XMR®CALH*XMN®SALN
YPzXMNCCALH=-XMR®SALH
XMOaVMR®CALHe VMN®SALN
YMOzVNNPCALH-VMR®SALH
XMDzXMD¢1.E=20
THMVZATAN2(YMD,XMD2*57,2358
THMVPsSTHMV
XTPzXT
YIP=YT
XMPzXM
YMPsYM
KXP(1)aKX({Le2)

KXP(2)skX (208
KXP(3)zKX{142)
KXP (e)mKXl242)
KXZP(1)akKXZl1,1)
KXZPt2)sKXZ(2.1)
KXIP(3) akX2(1,2)
KXZP (L) uKX2(2,42)
KZIP(1)3KZl101)
KIPt2)=KZ(2+4)
KIP(13)=KZ(142)
K2Ptbh)aKki(2e2)
XPU1)aX(1,1)

r A L

ST N b
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XP(21=XK(2+1)
IP(1)=21.1)
ZP(2)1:21(2+1)
uoPTpPzUQPT
XINP=XTN
XTRP=XTR
XMNP=zXMN
XMRP=XMR
END

#»TRANJLATION TIME = oeS39®ee




SET AzCavebeloloete uu

SET ALnaly,

SET  AT=0,0eledeielosaa

SeV Bal,,l.

Se'l 807‘3..'&.'0-.1.

SeT Cagatedol

el CINTFDay,. "

SET CINTBO=(,S

SEV 023 ¢0leelenve

SET DTBCK=Q,. (2

SET DTFWO=(Q,.CQ

Sel Fel,.iel.8

SET Nzl 0.C

SET FHau CoelalecelalL”

SIT 1ALG=S

SET KXz 1ol 4ueilvioce on

SET KXZ=2(0e0eCeColaloded

StT K220 oTelalolaus ov

SEI Q‘:-(.O.C'G.Co\}.ﬂ

SET RINvVsy,

SET 325Ceedavloavice

SET TFINITab.

SET VMR=_G0C.

SET VINIC=0,

Se¥? VIRa(,

SIT WMXTBza0asleveledBatleblocditgtan

SET WNMYTB2«27494=07:49 0= eu o=l 943769009
SEV WIXTB820.0, 1.0 2l 2ol 3. Ce “.0
SET WTYTIBz0.(, CeGo Jede Bl Olel, bhoew

SeT WOMXTB \i.s‘.l-LX.X.U.J.L'.’.CX.S.;'J.il.J.hS.ll.b.O

SET WOTYTO 2 Jeleceloblhootiubee ol ol oleC
SCT WUTRTS 2 Jeledecocaddolelodellob.!
Sel XIC=23 0.v2e

SCT xMRIC==3Qu5,

SET xTRIC=0.

ST XTNICaQ.

PREPAR T XPeZPoRKXPIKXIP sKZP ¢NoNT 4 WM, vee
BURUEN. ASSISToUTIL ¢J2cROGTFZERDL,ULPTP
PREPAR XTNP X TRP o XMNP o XNRP

PREPAR THMYP

PREPAR XTP,YTP,XMP,YNP

PREPAR XMO,YML

PREPAR XML,YNML
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B.4 Program DUCATJ

This section contains a listing and parameter
definitions for the DUCAT3 program which solves for a
disturbance-utilizing control or a conventional linear- :

quadratic control in the case of zero set-point problems

with a fourth-order plant and fourth-order disturbance model
(or two second-order disturbance models). Input parameters

determined by "SET" statements, and plot output parameters

identified by "PREPAR" statements at the end of the program,

are defined below. Printed output parameters are also

defined.
INPUT PARAMETERS
PARAMETER DEFINITION

A A as defined in Chapter 1V,

AT Transpose of A,

B B as defined in Chapter IV.

BT Transpose of B,

CDZXT Drag coefficient table, independent
parameter.

CDZYT Drag coefficient table, dependent
parameter,

CINTBD Backward~time communication

interval (sec).




CINTFD

DRAGC

DTBCK

DTFWD

FH

IALG

MMXT

MMYT

RINV
S

TFINIT

TMANXT

TMANYT

TWN1YT

Forward-time communication
interval (sec).

D as defined in Chapter IV,

Drag constant, %p SpCp
as in Chapter 1IV.

Backward-time integration
interval (sec).

Forward—-time integration
interval (sec).

F as defined in Chapter IV,

FH as defined in Chapter IV,

H as defined in Chapter IV.

Logic input. Selects fourth-order
Runge-Kutta integration when

Migssile mass table, independent
parameter ( time ).

Missile mass table, dependent
parameter (sluas).

R as defined in cChapter IV,
Inverse of R.
S as defined in Chapter IV,

Maximum value Tpax for final-
time scan (sec).

Target maneuver disturbance table,
independent variable,.

Target maneuver distutbancs table,
dependent variable (ft/sec<).

Horizontal target wind disturbance
table, dependent variable
(ft/sec?).

rgye-faage-wrygmiie




TWN3YT

TWN3XT

Vs

WND3XT

WND3YT

XIC

XT1lIC

XT2IC

XT3IC

XT41C

PARAMETER

XP
Zp

KXP

PLOT
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Vertical target wind disturbance
table, dependent variable
(ft/sec?).

Vertical target wind disturbance
table, independent variable,

Velocity of sound, low altitude
(ft/sec).

Vertical missile wind disturbance
table, independent variable,

Vertical missile wind disturbance
table, dependent variable
(ft/sec?).

Initial condition of x.

Initial condition of horizontal
target position (ft).

Initial condition of horizontal
target velocity (ft/sec).

Initial condition of vertical
target position (ft).

Initial condition of vertical
target velocity (ft/sec).

OUTPUT PARAMETERS

DEFINITION

Program time (sec).
x as defined in Chapter 1V.
z as defined in Chapter 1IV.

Ky as defined in Chapter 1V,




KXZP

Wlp
W2P
UQCPTP
UTIL
BURDEN
ASSIST

cDzp

MMP

DM
Dl
D2

THMANP

VELTP

VELMP

TMANP

ULONGP

ULATP

UOPTAP

WINDL

Kyz as defined in Chapter 1IV.

w, as defined in Chapter 1IV.

w, as defined in Chapter 1IV.

u® as defined in Chapter IV.

Utility as defined in Chapter 1V,
Burden as defined in Chapter iV.
Assistance as defined in Chapter IV.

Drag coeff.cient Cp as in
Chapter 1IV.

Missile mass (slugs) as in
Chapter IV.

Base drag of missile (£t/sec?).
Horizontal component of DM,
Vertical component of DM,

Angle of target maneuver force
relative to ground (degrees).

Target velocity magnitude (ft/sec]).

Missile velocity magnitude
(ft/sec).

Target maneuver acceleration
magnitude (ft/secz).

Missile control force,
longitudinal (pounds).

Missile control force,
lateral (pounds).

Missile control force,
resultant (pounds).

Horizontal missile wind disturbance
acceleration (ft/sec?).

Y 1P S PRI /o' T Pt 2




WIND2

WNDTI1P

WNDT2P

XM1lp
XM3Pp
XTlP
XT3P

THMP

THTP

XT2pP
XT4P

XM2P

XM4P

XT2DTP

XT4DTP
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Vertical missile wing disturbance
acceleration (ft/sec<)

Horizontal target wind disturbance
acceleration (ft/sec?).

Vertical target wind disturbance
acceleration (ft/sec?).

Horizontal missile position (ft).
Vertical missile position (ft).
Horizontal target position (ft).
Vertical target position (ft).

Missile velocity vector angle
(degrees).

Target velocity vector angle
(degrees).

Horizontal target velocity (ft/sec).
Vertical target velocity (ft/sec).

Horizontal missile velocity
(ft/sec).

Vertical missile velocity (ft/sec).

Horizontal target acceleration
(ft/sec?),

Vertical target acceleration
(ft/sec?).

Yy o -

i
%
:
¢

i EOTIMR 4 4w

T

Bl e




o e, s+ L A A i . AN

ot r——

PARAMETER

KXT
KX2T
KZT

TAUTAB

JMATAB

J2TAB

J3TAB

JTFTAB
X1TAB
X3TAB
EAUTAB

EUTAB

PRINTED OUTPUT PARAMETERS

DEFINITION

Stored initial-condition of K.
Stored initial-condition of Ky,.
Stored initial-condition of K,.

A particular specified terminal
time Tj.

Value of X xT(T) Sx(T)
T g

Value of % / x (t) Qx(t) dt
0

T o

Value of % [ u (t) Ru(t) dt
0

Value of J at t = T.

x1(T).

x3(T).

EAU as defined in Chapter 1V,

EU as defined in Chapter 1V,

The listing of Program DUCAT3 follows:
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DucAaT3
PRUGKAM OPTOL
COMMENT = COMPULTC OPTIMAL LONTRGL FOR CASE OF MISSTILE INTERCEPT 7 ...
C
INITIAL -
ARRAY Al sio) gARA (e ge) s A biluet) s ARL(wgi) dARU L 14) s ARS (L)
ARRAY ARG 1w ou)d
ARRAY ARF (4 94) gnRUL9sa) sARH {4 o4) sARHT (Lote) JARIC(G 14 ) JARJ (L ole)
ARRAY ARIL(wye) ’ '
ARRAY ARITlwo ) s AnKI+eu) sAT G pu) sbituyl) sBINV (492) 98T (2s&)
ARRAY TUZATIT),COZYTIT)
ARRAY Ul o) gUMXT (4] gult YTUL) oF (gc) o FHCU o) o H(204)
ARRAY JTIFTATLIC) oKX Lwypu) sKXIC (woted g KXPlwow) o KXT Lyl 410)
ARRAY JMATAB(Ic) oJCTAGLL )y 0TAdCL.) o+t AUTAB(L ) yEUTAB(1)])
ARRAY KXUOT (4 414 ’ O
ANRAY KXZCwyoud ok Keluluow) s KKZP (4 984) oRhXZT(wod913) o&KXZTR (4 ols)
ARRAY KX2UOT (wen) - '
ARRAY KZ(agu)
ANRAY K2u0T (4 4u) T o
ARRAY KZIUtuwyed gKZP (ope ) oRZT (g9 1l) gl ye) sQX(Loa)4RE242)
ARRAY MMXT{(Z)i,dRYT(SHY 7 oo e
ARRAY RINVEcoc) s RINVUT (L 9u) +RPUUPT (Coadaslusle) oSKl,yi)

ARRAY TMANAT {4) ,TAAIY T (4)

ARRAY TAUTAL(:L)

ARRAY THNIXT(o) +TAN.YT{o0) s TANIXT (6) o THUNIYT ()

AxRAY UUPTEE e 1) qUOPTP (L 0id oVilual) o V2 (we1)sV3 (il gValu,l)
ARRAY VS(wys) 7 i

ARRAY WNUIXT(6) ¢WNDIYT (o)

ARRAY Klwv D) o XICTa9 1Y o X2 (e g} o XLTAB(LT) 4 X3TAB (L)
ARRAY XuLTtu,sl)

AIRAY TXUOTL (L o AT s XOOTC (L 41}y XOOT 31kl

ARRAY ZQLol) oiP(oll)

INTIGER ToJ

INTEuzrR NS

INTZGER NSFNL

INT202RK NCRKkLINLKRAZIN_RR3 g R4 e N KRS o NERROD ¢ NERR7 o NEXRS, NC 2R9

CONSTANT A=16%7,RT:10%7,,3:28%].,37=56%0,,D=106%0.

CONSTANT CUIxT=7%_,,0u2YT=7% . \
CONSTANT CuZP=C«¢MNPET.

CONSTANT OMXT=4®., ul¥T=9*,,

CONSTANT UM={. ul=34902=30

CUNSTANT URAGL=.,

CONSTANT JTdCK= 24 0TFWD=3,

CONSTANT F=B8%.,4FHz.6%,,ybruV=30,c9H=8%L,

CONSTANT KX=.6%J, o KXZ:28% ., +KZ=16%0, N

CUNSTANT MAUHP=.,

CONSTANT VELHMP=.™ ~

CUNSTANT MMXT=5%( 44 YT=5%_,

CUNSTANT Q516%0. gRE4FI GRINV=4®. . 45=16% 0, * !
CONSTANT TFINIT=C..

CONSTANT THANP: I THPRNP:Z. o yHWiP3Te yW2P=1,+ VELTP=D,

GUNSTANT ‘ﬂAN-‘-.--oTHANXI=n‘.o.'HAN'f“’.:-

s Ay T AT TICABLES
5 T S NTATNED A
EROFPAGESWHLCHDO!U!

THISDOCV“”KTIS! !
THEC[PY:TINICVLUTO?w,
SIGNIFICANTNYMH
RI?RODUCLLIGIBLY.
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CUNSTANT TaNiXT=0® . TwWiilYl 6%,
CO~>1“NY TuNSXT=ﬁ';..TWNS”=b'G.
CONSTANT uworTAr-c.
CONSTANT ULUNGLP=., uLATP=
CUNSTAaNT Vvo=i.
CONSTuNT n01=..;NU¢=v- .
CONSTANT WINUIzZ. o9 WINUC=depNm1ZvegNc=ns
CONSTANT wWNO3KT=z0%%,4WNL3YT=0" ],
CONSTANT WNUTLP=y, odNUTCP-(, .
. CONSTANT XIC=w® ., o o T T T
1 CUNSTANT XTllU= . eXt3iUsc e XTe izl oy XTwllz0.
N CONSTANT XT<DOT=L1,,XT4DOT="". ' ’ ’ h .
CONODTANT XTcUTP=, .lTnDl’Pz.,.
CONSTANT XT(P={, o XTuP=0kM P=T, g AMuP=y, ’ oo
CONSTANT XMiP=l e s AMSP= L o o KT iP=U0 o XTSP=) s o THHP=Jo o THTP= U,

LUGICAL FWOUWULLAST

N3=.

UJ JRULIC Iz144

U0 dWUIC J=i.4

AXZICtLydd)=0s

KZIC(1yuh=T4
BWO1C. s CONTINUL

FHD3WU= +FALSE o

La3T=.FALSE.
LOOP,,CONTINUE

CONSTANT LinTLF=uaetld

CONSTANT CINTFO=(«I5CINTUG: i . S e e

MaXT=RSWIFHOLWD sOTFwD yBTUUK)

CONSTANT UOPT=2%(.

BURJUEN = ..¢

ASSIST = o0 S

UTIL = Ve

CONSTANT X243, "~~~ — " =° =~ ) o et v
CUNSTANT Z=4% .,
TSTP = 1., o T T/ T

CUNSTANT RXP=.6%L . ¢oKXL{P=10% . s oKIP210%.,
CONSTANT XPL¥y,,ZP%%T, ~ 7
CUNSTANT UOPTp=2* .,
2237, cre | mmeie s e s - vammr——— s sae e a e . - e e meem
JI3z . .
EAUzG,. N
EVay,
J2S=¢C. - ' N ' T
JHAYERZ W

. Tizd. . meime ee e . . . e
MAGH=._,
MHa .
Wis.,

! W2z.,
WiL3L.
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H‘sz .
Wwol=L. ’ o T ’ T -
Wu2={,
X¥i=xT11Io o
XT2=xTélo
XT3=X1351C
ATe=zXTew]lC
XML=XIC{La2)eXTL -
XM22XIC(Zy2) +XT2
‘ XH3I=XIC {3,1) #XT3 , R '
: XM&=XIC (wed) +xTe !
f ENG 3 MINITIAL™ i
DYNAMIU
CINTLRVAL TINT=(.1 = ° ’ ) ’ Tt T TTm
MAXTERVAL MaAXT=i.002
NST.PS  NGTP=1
CINTFL=RSWILAST yCINTLF yuiNTFL)
CINT=RSW{FHUBRO+CINTFL,CINTID) o I
VARIAoLe Tze.
ALGOKRITHM 1ALG=L ) Tt T T CoTTrmeTem e
IF (Frdbwu) Lu TO oXPuV
IF(T..E.CJ GO TO SKPSV ° ) - T
Na=WdS+l
00 3VLooP T=i,4 77
U0 SVLOGP Ja21,4
KXT{LoJ o NSV =XTL 4 J) 7 ) o 0T
KXZT (L4 JsNSI=KXZ LI 9J)
KZT (193 eNSY =K1K J)
SVLOOP .+ +CONTINuC
T TG0 TO SKkPDeER T T o -
SKP3V,.sCONTINUE
“HOL=RSWAT  EGe vl an(Ai=WIl) ZUT-TL)) T
WD2=KSW (Tetwe .osleolMWe=n2L) Z(T=TL)) .
Wil=wi ’ ’ o -
Welzwe
Te=T" o ) o
SKPUER« s CONTINuUE
' TERMT (ABSIT-TFINITY /LT .CINTOL.AND. .NCT.FWOBRD) Coon T
IF(FWUdNL) ToTP=CINI3UPFLUAT INS)
IF(FWDOBNWO) CTIKTZAMINL{CINTFL,TSTP-TV
CUNSTANT FGOMN=143i=3
TERNT(ABS{T-TSTPY,LL . TGGRN.ENU,FADBAD) ~
OCERIVATIV:  OJPTLN
CALL FYNDRV  ~ o T o ’ T -
KX=INTVC(KXUUTyKXIC)
KXZ=INTVCIRXZDCT 4KXZITY
KZ=INTVC(KZUOT, K Z1C)
X=INTVC(XTAT,RIC) ' - b
JE=INTCG(JRUOT 0
J3sINT_GCu3DCT,led  ~ 77 7 7
EAUZINTLG(EAULOT 4. o)
ZU=INTIGTZUCOT, 0W) o ’ -
XT22INTeG(XTeulioeXTIe) .
ATuzINTEGCTXTHLDOT 4 ATWITY -
XTL=INTEOIXTc X TLLIC)

R i i
Db men

o

AT Sy v ACTUCABLE.
THEOF, o vLTE T 0 ATrR A /
SIGNIY G L7 00 ER OF PAGRS WHICH DO 02

REPRUDUCE LEGIBLY. .
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T e jarrur=yu

KT3=INTEOLUXTa o XT310)
KMIaX(l,0)eXT( o
KMIzX(342)¢al3
XM2ax {241)eXT{
XMe=X (e gidonTy
END 3 “ucnIVATIve*
ENU 3 “uYNAMILT
TERMINAL
IF (FAuBWUsANUCLADT) LU TU TekM
IF (FwuBhu) GO Tu CYCic
WRITL (by448) (‘(KX](IltJJ.&‘)'KXI‘(lngJ"K.Q XX
KZT(IIOJJQKK"1111'*‘oJJ‘lvh"Kk=1'NS)
98.. FCRMAT(Tc.43c15.%)
NSF Al =NS '
N3z
FHDInU= o TRUL
oY Tu StETIC
CVCLE. QCON‘ INUL
CALL MMPYU(DeX g3 Xslpwosi)
SCM=y .l ’ ST
V3 JT. Iziew §
JT24s SCM=SCMeXUT,2)%3X(T,.1) '
JMAYLR=Z L H*5CH ' .
JTF-JUMAYER+JC+J3 ) ;
JMATAYINS)zUMAYER ¢
JEYAL(NSY=JL ™~ T ot ) Lo )
JITALINS)=J3
ctAUTA (NS =T Ay
cUTABINS) U
X1TAGINS)=X(L,1)
X3TAb(INS)I=KE3 420
JYFTAGINS)=JTF T o o ) -
TAUTABINS) = T

e, £ T .

. %

Py

SETIC.eNSzhiot)
1F {N>«GTWNSFNLY GO TC FNLRUN : . :
RECUK.» UJ IC13 J=1leb i
vd ICL Ty T - ' ’ T T i
KAIVEL v )=KXT (Ll yJeNs) . i
KXZICITI 4 J)=KXZTUT J,NS) :
KLICULosU)=KZT (L ydeNo) H
IC1..CONTINUZ T o
LOG

T

vy TU LCOP .
' FNLRUN. 4CONTINUC™ =~ — 7 - ' 4
JZERL=Y .= 80
1 DO JMIN T=IWNSFL — —
IF (JeRULTITFTABIIN) GI TO JMIN
JZERV=JTFTABLYY """~ -
TFZ-RY = TAUTAB(I)
No=T 7 T
: JMIN.+CUNTINUC
N3zo ' T '
WRITC (09299 (TAUTAGCL) yUNATABLID) v J2TABUL) ¢J31AB(I)s  ooe

o e T




JVFTABCL) o XLIADCL) o XS5Tu3 1) o AUTAUCL) 9cUTABILL) 9 I=1¢NSFNL)
299, FORMATITu FL 2o TIZ o7 0 T25450 st oTlloclliowneee T
Towpbtl oo TUB el ewelBeo liovwgi9oecliotoglillivsbiden)
RedIivo & - .
LAST=z o TRUL
L0 TOo RECLR
TEKMe s UONT INUCL
END 3 “TExMINAL™
END » “PRrRUURAM"

s e oo NOT
THY O S
(,T"I‘ ‘, \

R




B s

Ar

CALL

[+ X2 X3}

1

CJ30ITESL, T T

T CALU NMPYIBLOPT  XOUTZvwscr s

XOOTUTviT=4s
~ RETURN

SUBROUTINS FTHNORV

IF (FWDEWL) GO TO 1205

U0 5 J=z1les

U0 5 l=zige

KXZIRCL ¢ JIzKX2tUo])

CALL MMPY TKX,AARA 49l

CALL MMPY (AI,K‘.ARD’N.M.‘Q,

CALL NMMPY{(D,RINV,BRINVewslZs)

CALL MHPY(BRINVetT saRKyveco )

MMPY KX s ARKyARC L ylt gl gte )

DO w J=1,4

00°% I=1,e ' oo T

ARDCI +J)=ARCL (I3}

CALL FAPYIARTI KX 3ART sy &y~

CALL MMFY(ARD ¢KXZ g AxDoie ode o)

CALL MMPY(KXZTRVAKKZART T30 sh 0¥ ” . o
CALL MAPY(ARIL¢KXZsARI ¢4 949 n)

CALL MMPY(RXZTR sFHoARUyu G, %) 7 ’ Tt T
CALL MMPY (AT'KXZ’A“E’“'“'“{‘

CALL MNPY TKXZ 2 UsARF At by 7~ 7 77

CALL. MHPY (KX osFHeARGINIwIY)

CALL MMPY {KZ,0,ARH by ya)

DO o J=1l44

V0 o I=1,¢
ARHT (L, J)=AKHIJVI)

ARIT(1,JV=ARVJ, 1Y ~~ — 77 B ’ ST

e e e m P .

. LET uERIVATIVES FOn 3ACKWARU INTEGRATIONS
20 R J=1_"1', e o e ees o O ut S _ e - -
DO ¢'C Izl'“ .

RXOOTAT y JI=ARA(T s IV *ARBTLJI<ART(TIWJ) " "#QUTy — 777 770 7 777
KXZJOT(TI 9 )=ARGLI yU) +ARFULy ) +ARE(TI s J)=-ARULL V)

KZOOT (T 4J) 2ARJTTZITHARATL o JTFARIT UL v D) +ARHT (T o JI<ART(THJT ~
GONTINVE

J2u0T=g.

EAUUOT=y,
TU00T=0 .~ ’ Tt e T T
00 20 Q=144

LOOP TU COMPUTC X ¢KXyKX29KZ9UOPT 4J
CONTVINUE — -~ "7 oo et o - a T

CSEYURTCCOMPUTT T T T T o T T
CALL MMPY AR o XUOTLled9kel)

Ge¥ DISTURBANCcS, AISslic ANU TARGEY e

TUTR PASUNFST IS 7857 A7 777 0 A TTCABLE,

TOFOOLY oD HEL T o NTATNELA

SIGNIFiCANT NUNRER OF PAGES WH1CH DO NOT
REPRODUCE LEGIBLY.
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OO0

[2 X s W ¥ 2]

101

12

TTAUSTZUTFINIT ey~ )
VELMESARTIXMCPAdceXng®XMu) e Lot =00
MACHz Ve LM/ZVY
CALL INT_RP(MACH COX Ty oulY T o7 el 0L UZ oNLRRY)
CALL INTexPETYTAL4MMAT ¢MMY 1,y rqc sMMyN_ki/ T)
UMSUKALLEVLLMOY LM U/ MM
DisUM® XM /VELM
((FETITH ‘
D22UMSXML/Vi LM
uds=ud
IF‘l .LLO’A.A)‘“N.“; .
IFCT LT edoletueTobealaLl TNANLZ (50,81 -¢8L00
U‘(f.of.&.ol TMAN= Ll
XIZ;X,Z'XQL‘L., - ’
THT=2ATANCIXTooal)
THAN= TMAN® L =20
THMANSThT+1 570 0% (THANZOUWr T (THAN®TMAND )
CALL INTewP(TTAG W TR XT o TuNiYT 424 owNLT LoNERRS)
CALL INTenrPUITAS o T W 3T o TriicYl suec ydANUT2 9o NERRY)
IF(T LT aie7eChelenToled) LU T0 Loyl
WINONz 32.2FSINI3e927%(T-Lo7))¥SIN(3.327%(T~1.7))
WINULSWINOM® AMe VL
WINGCSWINDM*XMZ/ZVELS
WINJI==niND.
CONTINVE =~ W T 777" T
XT2O0T2MNUTI+SART (T HANSTMAN) *CUS LT HMAN)
XTeOCT=NNUTS ¢ SARTITMAN® THANI*SIN(THMAN)
WizWInUL+LL~XTcUOT
W2=WINU2+U2-LRAV=-XTDUT

ot T ULISTUKDBANC, wenIVATIVLES
Z(1,1)=Wi o e
PETXPYEL NI
Z(S..l=h2
Lleoidzmuc

Wi T COMPOSITC UISTURIALT
CALL MMPY(Fhy (s XUUTS o b9.)
g9 iJ< I=i+h
XoOTHIed)XUOTI (I 2)en0ITSCLol)eXuOTotlvl)

el UP FUR KX orXcgKZ FURNAKD INTCOGRATIONS
DO 1.5 Jzleb *
UJ 103 I=.4w
KXZTREI pJY=KXZUJHW I
CALL MPEY (KX sAsARAJlbywow)
CALL MMPY (AT KKgaRTyerweal
CALL MMPYLS R INVouURINV s elre)
CALL MMPYUGRINV BT ¢ARK sl gy o &)
CALL MMPY (KX s AR 9 ARLL g 9o )
00 Lib J=lel ’ o
U0 Luw =144

e ot -n"""f\"TT“‘\RL‘E'
R RS naASU o 3\
- oot
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136 ARULIWII=aRLILL yU)
CALL AMPY{ARCI oKX sR-T yuou,sle)
CALL MMPY(ARU KA L sAnU yw ooy
CALL HHPVTKXZT—NQARK'A'\IL"O"v“)
CALL MMPY(ARIL1sKXZLpARL suatogn)
CALL MMPYIKXZITReFHsnRIslpeyn)
CALL MAPY (AT oKXZsA~Erlastests)
CALL AMPY IKXZ3DyARF ol ol o)
CALL MMPY (KA FirigaRupwpwgn)
CALL MMPY (KZ09ARH L4 ,%)

U0 Lluew J3aew

U0 200 Tzige

ARHT UL s JI=ARH (I 1)
136 ARJT UL, U1 =And (4,00

OO0

wET VenIVATIVES FOx FORWARL INTEGKATION
00 LL: J-l'
Ve 1. [zl
KXUIT (L 4U)==ARA(L ¢J) =dRI(19J)+ARC (T4} ~J(Ls N
KXZUOT(I,0)=~ARG(L ) =ARF (L 4u) =ARC AL 4 J) +ARD (L4 J) 9
K200THI 4 D) ==ARJT{T s I =aRATLy JISARITL yu) ~ARKTAL o J) ¢ARIUT VI) o
110 CONTINUC '

—
XX )
|

CuMPUT- UOPT

GALL MHPY(KX,X.Vl,u.‘o.il
CALL MMPYIKXZ 42 Vivhwwel)
00 12. I=1lye

120 VIUL 1T=VITTZviF+#Ve T, iy
CALL MMPY(RINV dTokiNVAliscrlon)
CALL MMPY(RINVBT VI ULPT 2o,
UOPT (391 )==U0PT (1,410
UOPTIZ,y1V==U0PT{ZW i

COMPUT. PERFORMANGCL INHucX AT T.LZ.TF
CALL MMPY(RZVUIPT,RUOPT 2,2, 7
VBOTi=(C e
V0 2T5 1I=T1,2

2i5 VUOT1=VuLTievUPELTL2)*RULPI (TI43)
R K {17 ) -1 471710 £ Su
CALL HHPY(HoxtQX'Ms“o‘)
vultrez=ve T
00 2C¢o [=ieb
T 206 VEOTCEVTOTZ#X T, 1y *QXtI. 1y —
J200T=j.5%v00T2
TUNOOTI=b. T T
QU (7 I=i,y&
v T 2RT VUOTIEVOOTSFUOPTII v UIPTIT 4T
EUDUT=J,5*v00T3
T U UXWMZEXHZELLESLT
| THM=ATANZ (XM 4 XM 2) -
“ ! T YHMPETHR®ST . T
' ULONG= UUPT(I.L)'LOS(THHI000PT(Zo.l'aIN(THN)

Xz 11

Dl L T T P W aosr >rog poupepe g

T . L ! L abBakbe
o L . couTasNLU A
Tl N T OF FAGLS WHLCH DO ROP




r3qe

23C

23c

234

*STRANSLATION TiMc =
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